Navigation Links
Brown team finds crucial protein role in deadly prion spread

A single protein plays a major role in deadly prion diseases by smashing up clusters of these infectious proteins, creating the "seeds" that allow fatal brain illnesses to quickly spread, new Brown University research shows.

The findings are exciting, researchers say, because they might reveal a way to control the spread of prions through drug intervention. If a drug could be made that inhibits this fragmentation process, it could substantially slow the spread of prions, which cause mad cow disease and scrapie in animals and, in rare cases, Creutzfeldt-Jacob disease and kuru in humans.

Because similar protein replication occurs in Alzheimer's and Parkinson's diseases, such a drug could also slow progression of these diseases as well.

"The protein fragmentation we studied has a big impact on how fast prion diseases spread and may also play a role in the accumulation of toxic proteins in neurodegenerative diseases like Parkinson's," said Tricia Serio, an assistant professor in Brown's Department of Molecular Biology, Cell Biology and Biochemistry and lead researcher on the project.

The findings from Serio and her team, which appear online in PLoS Biology, build on their groundbreaking work published in Nature in 2005. That research showed that prions ?strange, self-replicating proteins that cause fatal brain diseases ?convert healthy protein into abnormal protein through an ultrafast process.

This good-gone-bad conversion is one way that prions multiply and spread disease. But scientists believe that there is another crucial step in this propagation process ?fragmentation of existing prion complexes. Once converted, the thinking goes, clusters of "bad" or infectious protein are smashed into smaller bits, a process that creates "seeds" so that prions multiply more quickly in the body. Hsp104, a molecule known to be required for prion replication, could function as this protein "crusher," Serio thought.

To test th ese ideas, Serio and members of her lab studied Sup35, a yeast protein similar to the human prion protein PrP. They put Sup35 together with Hsp104, then activated and deactivated Hsp104. They found that the protein does, indeed, chop up Sup35 complexes ?the first direct evidence that this process occurs in a living cell and that Hsp104 is the culprit.

"To understand how fragmentation speeds the spread of prions, think of a dandelion," Serio said. "A dandelion head is a cluster of flowers that each carries a seed. When the flower dries up and the wind blows, the seeds disperse. Prion protein works the same way. Hsp104 acts like the wind, blowing apart the flower and spreading the seeds."

Serio said that prions still multiply without fragmentation. However, she said, they do so at a much slower rate. So a drug that blocked the activity of Hsp104 could seriously slow progression of prion-related diseases.


'"/>

Source:Brown University


Related biology news :

1. Brown-Harvard team solves mobile DNAs surgical sleight-of-hand
2. Prions rapidly remodel good protein into bad, Brown study shows
3. Brown seaweed contains promising fat fighter, weight reducer
4. Brown scientists map structure of DNA-doctoring protein complex
5. Brown cancer biologists identify major player in cell growth
6. Bones in motion: Brown scientists to create new 3-D X-ray system
7. Current human embryonic stem cell lines contaminated UCSD/Salk team finds
8. Study finds more than one-third of human genome regulated by RNA
9. ASU researchers finds novel chemistry at work to provide parrots vibrant red colors
10. Same mutation aided evolution in many fish species, Stanford study finds
11. NC State scientist finds soft tissue in T. rex bones
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:6/2/2016)... 2, 2016 The Department of Transport ... the 44 million US Dollar project, for the , ... including Personalization, Enrolment, and IT Infrastructure , to ... production and implementation of Identity Management Solutions. Numerous renowned international ... Decatur was selected for the most compliant ...
(Date:6/1/2016)... YORK , June 1, 2016 ... Technology in Election Administration and Criminal Identification to Boost ... to a recently released TechSci Research report, " Global ... By Region, Competition Forecast and Opportunities, 2011 - 2021", ... 24.8 billion by 2021, on account of growing security ...
(Date:5/16/2016)... May 16, 2016   EyeLock LLC , a ... the opening of an IoT Center of Excellence in ... expand the development of embedded iris biometric applications. ... of convenience and security with unmatched biometric accuracy, making ... aside from DNA. EyeLock,s platform uses video technology to ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... ... June 27, 2016 , ... Parallel 6 , the ... today the Clinical Reach Virtual Patient Encounter CONSULT module which enables both ... physician and clinical trial team. , Using the CONSULT module, patients and physicians can ...
(Date:6/27/2016)... -- Liquid Biotech USA , Inc. ... Research Agreement with The University of Pennsylvania ("PENN") ... patients.  The funding will be used to assess ... outcomes in cancer patients undergoing a variety of ... to support the design of a therapeutic, decision-making ...
(Date:6/24/2016)... 24, 2016 Epic Sciences unveiled a ... susceptible to PARP inhibitors by targeting homologous recombination ... The new test has already been incorporated into ... cancer types. Over 230 clinical trials ... pathways, including PARP, ATM, ATR, DNA-PK and WEE-1. ...
(Date:6/23/2016)... ... June 23, 2016 , ... Mosio, a leader in ... Trials Patient Recruitment and Retention Tips.” Partnering with experienced clinical research professionals, Mosio ... practical tips, tools, and strategies for clinical researchers. , “The landscape of how ...
Breaking Biology Technology: