Navigation Links
Brown scientists map structure of DNA-doctoring protein complex

More than half of the human genome is made up of bits of mobile DNA, which can travel inside the body and insert genes into the chromosomes of target cells. This DNA doctoring not only shapes species over time, it also spreads antibiotic resistance and is used by bacteria that spread Lyme disease and by viruses linked to certain forms of cancer.

Last year in Nature, scientists working in the Brown University lab of Arthur Landy and the Harvard Medical School lab of Thomas Ellenberger announced they had solved the structure of "-integrase ("-Int), the protein "surgeon" that allows mobile DNA to cut into a chromosome, insert its own genes, and then sew the chromosome back up. That work was conducted using the lambda virus, which infects Escherichia coli (E. coli) bacteria and serves as a model that scientists use to understand mobile DNA.

Now scientists in the Landy lab have solved the structure of a DNA-protein complex that acts as a team of "nurses," aiding "-Int during this snip-and-solder procedure known as site-specific recombination. The structure is a three-dimensional representation of the DNA within this complex. Pictured on the cover of the Nov. 17, 2006, journal Molecular Cell, it looks like DNA dressed for a party, a double helix decked with clumps of curly, colorful ribbon. By solving this structure, scientists now know how these six proteins interact with each other and fold DNA during site-specific recombination.

"Once you know how these proteins and DNA are arranged, you have a much better sense of their function," said Xingmin Sun, a postdoctoral research associate in the Landy lab and the lead author of the journal article. "And once you know their function, you begin to see how the real work inside cells gets done."

Sun said solving the structure of the DNA-protein complex called for some creativity. Because it is a string of six proteins, the complex is too big and too f lexible to analyze through standard methods such as X-ray crystallography.

Sun used fluorescence resonance energy transfer or FRET, a technique typically used to study small protein complexes in a solution. This time, Sun used FRET to study large protein complexes in a gel. He tagged the DNA with fluorescent dyes and purified the proteins, placing them in a gel that was then shot through with light. Sun measured the wavelengths of light as they bounced between the molecules of dye. Those measurements were then fed into a special software program created by Dale Mierke, a Brown professor of medical science, which plotted their positions to create the structural map.

"The real breakthrough here is successfully using FRET to determine the structure of a large protein-DNA complex," Sun said. "Biologists now have a new tool to help them understand a variety of these complexes, including ones that control cell division, gene expression and DNA replication. So this technique represents a big advance."

Source:Brown University

Related biology news :

1. Brown-Harvard team solves mobile DNAs surgical sleight-of-hand
2. Prions rapidly remodel good protein into bad, Brown study shows
3. Brown seaweed contains promising fat fighter, weight reducer
4. Brown team finds crucial protein role in deadly prion spread
5. Brown cancer biologists identify major player in cell growth
6. Bones in motion: Brown scientists to create new 3-D X-ray system
7. Wisconsin scientists grow critical nerve cells
8. UCSB scientists probe sea floor venting to gain understanding of early life on Earth
9. UAB scientists discover the origin of a mysterious physical force
10. Fox Chase Cancer Center scientists identify immune-system mutation
11. Weizmann Institute scientists develop a new approach for directing treatment to metastasized prostate cancer in the bones.

Post Your Comments:

(Date:11/16/2015)... Nov 16, 2015  Synaptics Inc. (NASDAQ: ... solutions, today announced expansion of its TDDI product ... touch controller and display driver integration (TDDI) solutions ... These new TDDI products add to the previously-announced ... TD4302 (WQHD resolution), and TD4322 (FHD resolution) solutions. ...
(Date:11/10/2015)... 10, 2015  In this report, the ... of product, type, application, disease indication, and ... report are consumables, services, software. The type ... biomarkers, efficacy biomarkers, and validation biomarkers. The ... diagnostics development, drug discovery and development, personalized ...
(Date:11/2/2015)...  SRI International has been awarded a contract of ... to the National Cancer Institute (NCI) PREVENT Cancer Program ... modern testing and support facilities, and analytical instrumentation to ... studies to evaluate potential cancer prevention drugs. ... Drug Development Program is an NCI-supported pipeline to bring ...
Breaking Biology News(10 mins):
(Date:11/25/2015)... Orexigen® Therapeutics, Inc. (Nasdaq: OREX ) ... chat discussion at the Piper Jaffray 27th Annual Healthcare ... discussion is scheduled for Wednesday, December 2, at 8:00 ... replay will be available for 14 days after the ... NormartVP, Corporate Communications and Business Development , BrewLife(858) 875-8629 ...
(Date:11/24/2015)... 24, 2015 Cepheid (NASDAQ: CPHD ) ... the following conference, and invited investors to participate via ...      Tuesday, December 1, 2015 at 11.00 a.m. Eastern ...      Tuesday, December 1, 2015 at 11.00 a.m. Eastern ... New York, NY      Tuesday, December 1, ...
(Date:11/24/2015)... 24, 2015 /PRNewswire/ - Aeterna Zentaris Inc. (NASDAQ:  AEZS) (TSX: ... behalf of the Toronto Stock Exchange, confirms that as ... no corporate developments that would cause the recent movements ... --> About Aeterna Zentaris Inc. ... --> Aeterna Zentaris is a specialty biopharmaceutical company ...
(Date:11/24/2015)... , November 24, 2015 SHPG ) announced ... in the Piper Jaffray 27 th Annual Healthcare Conference in ... 1, 2015, at 8:30 a.m. EST (1:30 p.m. GMT). --> ... Financial Officer, will participate in the Piper Jaffray 27 th ... NY on Tuesday, December 1, 2015, at 8:30 a.m. EST (1:30 ...
Breaking Biology Technology: