Navigation Links
Breakthrough in micro-device fabrication combines biology and synthetic chemistry

Nanostructured micro-devices may be mass produced at a lower cost, and with a wider variety of shapes and compositions than ever before, for dramatic improvements in device performance by utilizing very small biologically produced structures. These entirely new biologically-enabled approaches are detailed in the current issue of the International Journal of Applied Ceramic Technology, published on behalf of The American Ceramic Society.

This study's newly invented approaches for the low-cost mass production of micro-devices could yield unprecedented breakthroughs in genetically engineered microdevices (GEMs) for biomedical, computing, environmental cleanup, defense and numerous other applications.

Conventional microfabrication processes, similar to methods used to make computer microchips, are expensive (i.e., capital equipment intensive) and not well-suited for directly producing large numbers of complex, three-dimensional, nanostructured devices with a wide variety of chemistries and properties. Nature, on the other hand, provides spectacular examples of micro-organisms that synthesize microscopic nanostructured shells with well-controlled and highly-reproducible 3-D shapes and features currently unattainable by manmade processes. However, the naturally occurring diatom microshells do not have the specific properties needed for device applications, such as electrical conductivity, biocompatibility, thermal stability, and chemical compatibility.

According to the study's lead author, Kenneth Sandhage, "By demonstrating that biologically derived structures can be chemically modified without changing the starting shapes or fine features, we have opened the door for new research and development in the processing and application of many devices that would otherwise be very difficult or expensive to produce."


'"/>

Source:Blackwell Publishing Ltd.


Page: 1

Related biology news :

1. Breakthrough Microarray-based Technology for the Study of Cancer
2. Leukemia Drug Breakthrough Study In New England Journal Of Medicine
3. Breakthrough method in nanoparticle synthesis paves the way for new pharmaceutical and biomedical applications
4. Breakthrough isolating embryo-quality stem cells from blood
5. Breakthrough System for Understanding Ocean Plant Life Announced
6. Breakthrough: Scientists create worlds tiniest organic particles
7. Sciences Breakthrough of the Year: Watching evolution in action
8. Breakthrough for stem cell research
9. Breakthrough in understanding type-2 diabetes as key genes identified
10. Breakthrough vaccine to treat chemo-resistant ovarian cancer
11. Molecular biology fills gaps in knowledge of bat evolution
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:4/15/2016)... , April 15, 2016 ... the,  "Global Gait Biometrics Market 2016-2020,"  report to ... http://photos.prnewswire.com/prnh/20160330/349511LOGO ) , ,The global gait biometrics ... of 13.98% during the period 2016-2020. ... angles, which can be used to compute factors ...
(Date:3/31/2016)... PROVIDENCE, R.I. , March 31, 2016  Genomics ... leadership of founding CEO, Barrett Bready , M.D., ... addition, members of the original technical leadership team, including ... Vice President of Product Development, Steve Nurnberg and Vice ... have returned to the company. Dr. Bready ...
(Date:3/22/2016)... Ontario , PROVO and ... Newborn Screening Ontario (NSO), which operates the ... for molecular testing, and Tute Genomics and UNIConnect, ... management technology respectively, today announced the launch of a ... next-generation sequencing (NGS) testing panel. NSO ...
Breaking Biology News(10 mins):
(Date:6/24/2016)... ... June 24, 2016 , ... While the majority of commercial spectrophotometers ... 5000 and the 6000i models are higher end machines that use the more unconventional ... spectrophotometer’s light beam from the bottom of the cuvette holder. , FireflySci has ...
(Date:6/23/2016)... 2016   Boston Biomedical , an industry ... to target cancer stemness pathways, announced that its ... Drug Designation from the U.S. Food and Drug ... including gastroesophageal junction (GEJ) cancer. Napabucasin is an ... cancer stemness pathways by targeting STAT3, and is ...
(Date:6/23/2016)... MA (PRWEB) , ... June 23, 2016 , ... ... Peel Plate® YM (Yeast and Mold) microbial test has received AOAC Research Institute ... platform of microbial tests introduced last year,” stated Bob Salter, Vice President of ...
(Date:6/23/2016)... ... June 23, 2016 , ... Supplyframe, the Industry Network ... Supplyframe Design Lab . Located in Pasadena, Calif., the Design Lab’s mission is ... projects are designed, built and brought to market. , The Design Lab is ...
Breaking Biology Technology: