Navigation Links
Brain enzyme treatment relieves memory lapse in Alzheimer's mice

An enzyme that helps neurons rid themselves of excess or aberrant proteins is required for normal brain function, according to a new report in the August 25, 2006 issue of the journal Cell, published by Cell Press. What's more, by increasing brain levels of the enzyme in mice with Alzheimer's symptoms, the researchers found they could reverse lapses of memory characteristic of the debilitating disease.

Treatments that elevate the protein, known as ubiquitin C-terminal hydrolase L1 (Uch-L1), might therefore have potential as a new therapy for Alzheimer's disease, according to the researchers. Currently available therapies have almost exclusively targeted amyloid beta (Aß), the protein responsible for the "amyloid plaques" that riddle the brains of patients with Alzheimer's disease, they added.

"By injecting what is essentially a Uch-L1 drug to raise its levels in the brain, we were able to restore a great deal of brain activity in a transgenic mouse model of Alzheimer's disease," said Michael Shelanski of Columbia University.

"While amyloid beta is certainly a key player in Alzheimer's disease--and efforts to reduce it remain a worthy goal--our results show that, even in the presence of the plaque, damage to memory can be reversed."

The findings suggest that neurons' protein-ridding machinery, the so-called ubiquitin/proteasomal pathway, may play an important early role in the pathogenesis of Alzheimer's disease, he added.

Ubiquitin is a "tag" that marks proteins for destruction by the cellular "garbage disposal" known as the proteasome, Shelanski explained. Uch-L1 acts as the proteasome's "gatekeeper," he added. Before proteins can be eliminated by the proteasome, Uch-L1 must remove their ubiquitin tag.

Earlier studies found that the brains of Alzheimer's disease patients show an accumulation of ubiquitin-tagged proteins, suggesting some defect of the protein degradation machinery, the researchers noted. Studies o f the brains of humans with Alzheimer's after death found evidence that the proteasome remained intact but largely unable to degrade proteins.

Interestingly, Uch-L1--a protein found almost exclusively in nerve cells--was also found at reduced levels in the Alzheimer's brain. Unpublished studies by Shelanski's group found that cells treated with Aß exhibited a rapid drop in Uch-L1, he said.

To further investigate in the current study, the researchers treated brain slices with a chemical that blocks Uch-L1 function. The treated brain tissue displayed a decline in "long-term potentiation" (LTP), a process whereby nerve connections are strengthened. LTP is regarded as the cellular basis for learning and memory.

Treatments that restored Uch-L1 levels corrected deficits in nerve transmission both in brain slices treated with Aß and in slices taken from transgenic mice with mutations that lead to elevated Aß and associated cognitive decline.

The researchers next asked whether Uch-L1 played an important role in fear conditioning, a form of learning known to be impaired in several mouse models of Alzheimer's disease.

For fear conditioning, mice treated with the Uch-L1 inhibitor and control mice were placed in a novel context (a fear-conditioning box) and exposed to a tone paired with a mild foot shock. Their ability to learn fear was tested 24 hr later by measuring "freezing" behavior in response to the box or the auditory cue. Contextual versus cued responses represent different forms of learning that depend on different parts of the brain.

A day after their exposure to the shock, mice with reduced levels of Uch-L1 showed a decrease in freezing behavior to 65% that of normal mice when placed in the box. The differences between treated and untreated mice persisted 7, 14, and 21 days after exposure to the electric shock, they reported.

On the other hand, the mice showed no differences in response to the auditory tone, suggesting variation among brain regions in the role of Uch-L1.

In mice with symptoms that mimic those found in patients with Alzheimer's disease, treatments that raised Uch-L1 greatly increased their freezing time compared to their transgenic littermates when contextual learning was assessed over time, the researchers found. Improvements in the treated animals' ability to establish a memory for fear did not depend on changes in Aß levels.

The findings provide a new window into the Alzheimer's brain that could lead to new therapies, the researchers said.

"The rapid fall in Uch-L1 activity in response to Aß raises the possibility that, in the Alzheimer's brain, Aß initiates a signaling cascade that results in the partial inhibition of proteasome activity more rapidly than is likely as the result of the accumulation of misfolded or undigestable proteins."

"Our data suggest that Uch-L1 could be an attractive target for the development of new therapeutic approaches to Alzheimer's disease, either alone or in combination with therapies that alter Aß levels."


'"/>

Source:Cell Press


Related biology news :

1. Drug That Tags Decision-making Areas Of The Brain May Aid
2. NYU Study Reveals How Brains Immune System Fights Viral Encephalitis
3. Transport System Smuggles Medicines Into Brain
4. Bird Brains Show How Trial and Error May Contribute to Learning
5. VCU Researchers Identify Networks Of Genes Responding To Alcohol In The Brain
6. Wiley announces publication of Databasing the Brain
7. Scientists Propose Sweeping Changes to Naming of Bird Neurosystems to Acknowledge Their True Brainpower
8. Brain-mapping technique aids understanding of sleep, wakefulness
9. Some Brain Cells Change Channels To Fine-tune The Message
10. Brain Scans Reveal How Gene May Boost Schizophrenia Risk
11. Brain-injury rehabilitation depends on acetylcholine circuitry
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:12/20/2016)... and GENEVA, Dec, 20, 2016   ... data sensor technology, and STMicroelectronics (NYSE: ... spectrum of electronics applications, announced today the launch ... kit for biometric wearables that includes ST,s compact ... Valencell,s Benchmark™ biometric sensor system. Together, ...
(Date:12/16/2016)... global wearable medical device market, in terms of value, is projected ... in 2016, at a CAGR of 18.0% during the forecast period. ... Growth in ... launch of a growing number of smartphone-based healthcare apps compatible with ... increasing focus on physical fitness. Furthermore, growing trend ...
(Date:12/15/2016)... 2016 Advancements in biometrics will ... and wellbeing (HWW), and security of vehicles ... passenger vehicles begin to feature fingerprint recognition, ... beat monitoring, brain wave monitoring, stress detection, ... pulse detection. These will be driven by ...
Breaking Biology News(10 mins):
(Date:1/21/2017)... ... January 20, 2017 , ... G&L Scientific Inc, a leading ... http://www.gandlscientific.com ), has announced the opening of new offices in Cambridge, Massachusetts, strengthening ... contractors. This is the latest step in G&L’s expansion of its global clinical ...
(Date:1/21/2017)... Jan. 20, 2017 Interpace Diagnostics Group, ... that provides clinically useful molecular diagnostic tests and ... into a securities purchase agreement with three  institutional ... of common stock in a registered direct offering.  ... agreed to sell to the same investors warrants ...
(Date:1/21/2017)... --  Boston Biomedical , an industry leader in the ... pathways, today presented data from two clinical studies for ... Society of Clinical Oncology (ASCO) Gastrointestinal Cancers Symposium in ... In a Phase Ib/II study of napabucasin – an ... pathways by targeting STAT3 – colorectal cancer (CRC) patients ...
(Date:1/20/2017)... BOSTON , Jan. 20, 2017 ... acquisition of Gen9, a pioneer in the synthesis ... Gen9,s unique expertise in assembling pathway-length synthetic DNA ... speed and capacity in the construction of new ... of industries. "Gen9 was founded to ...
Breaking Biology Technology: