Navigation Links
Biologically inspired sensors can augment sonar, vision system in submarines

To find prey and avoid being preyed upon, fish rely on a row of specialized sensory organs along the sides of their bodies, called the lateral line. Now, a research team led by Chang Liu at the University of Illinois at Urbana-Champaign has built an artificial lateral line that can provide the same functions in underwater vehicles.

"Our development of an artificial lateral line is aimed at enhancing human ability to detect, navigate and survive in the underwater environment," said Liu, a Willett Scholar and a professor of electrical and computer engineering at Illinois. "Our goal is to develop an artificial device that mimics the functions and capabilities of the biological system."

In fish, the lateral line provides guidance for synchronized swimming, predator and obstacle avoidance, and prey detection and tracking. Equipped with an artificial lateral line, a submarine or underwater robot could similarly detect and track moving underwater targets, and avoid collisions with moving or stationary objects.

The artificial lateral line consists of an integrated linear array of micro fabricated flow sensors, with the sizes of individual sensors and spacings between them matching those of their biological counterpart.

"By detecting changes in water pressure and movement, the device can supplement sonar and vision systems in submarines and underwater robots," said Liu, who also is affiliated with the university’s Beckman Institute for Advanced Science and Technology, the Institute for Genomic Biology, and the Micro and Nanotechnology Laboratory.

Liu and colleagues at Illinois and at Bowling Green State University described their work in the Dec. 12, 2006, issue of the Proceedings of the National Academy of Sciences.

To fabricate the tiny, three-dimensional structures, individual components are first cast in place on sacrificial layers using photolithography and planar deposition. A small amount of magnetic material is elec troplated onto each of the parts, which are then freed from the substrate by an etchant. When a magnetic field is applied, the induced torque causes the pieces to rotate out of the plane on tiny hinges and lock into place.

Each sensor is integrated with metal-oxide-superconductor circuitry for on-chip signal processing, noise reduction and data acquisition. The largest array the researchers have built consists of 16 flow sensors with 1 millimeter spacing. Each sensor is 400 microns wide and 600 microns tall.

In tests, the researchers?artificial lateral line was able to localize a nearby underwater vibrating source, and could detect the hydrodynamic wake (such as the wake formed behind a propeller-driven submarine) for long-distance tracking. With further advances in engineering, man-made underwater vehicles should be able to autonomously image hydrodynamic events from their surroundings, Liu said.

"Although biology remains far superior to human engineering, having a man-made parallel of the biological system allows us to learn much about both basic science and engineering," Liu said. "To actively learn from biology at the molecular, cellular, tissue and organism level is still the bigger picture."
'"/>

Source:University of Illinois at Urbana-Champaign


Related biology news :

1. Another Look Finds Promising Proteomics Test is Not Biologically Plausible
2. Beetle-inspired switch uses water for bonding
3. UC Berkeley researchers create a biologically-inspired artificial compound eye
4. Squid-inspired design could mean better handling of underwater vehicles
5. Study shows nanoshells ideal as chemical nanosensors
6. Polymers with copper show promise for implanted sensors
7. In-home sensors spot dementia signs in elderly
8. Smell of success for nanobiosensors
9. Researchers to develop ultra-miniature implantable sensors to measure blood flow
10. Motorola researchers develop selective sensors based on carbon nanotubes
11. Magnetic computer sensors may help study biomolecules

Post Your Comments:
*Name:
*Comment:
*Email:


(Date:4/24/2017)... , April 24, 2017 Janice ... partner with  Identity Strategy Partners, LLP (IdSP) , ... or without President Trump,s March 6, 2017 ... Entry , refugee vetting can be instilled with greater ... (Right now, all refugee applications are suspended by ...
(Date:4/18/2017)... 2017  Socionext Inc., a global expert in SoC-based imaging and ... the M820, which features the company,s hybrid codec technology. A demonstration ... Probe, Inc., will be showcased during the upcoming Medtec Japan at ... the Las Vegas Convention Center April 24-27. ... Click here for an ...
(Date:4/13/2017)... Calif. , April 13, 2017 UBM,s ... York will feature emerging and evolving technology ... Both Innovation Summits will run alongside the expo portion ... speaker sessions, panels and demonstrations focused on trending topics ... largest advanced design and manufacturing event will take place ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... ... October 11, 2017 , ... ... its endogenous context, enabling overexpression experiments and avoiding the use of exogenous expression ... guides is transformative for performing systematic gain-of-function studies. , This complement to ...
(Date:10/11/2017)... a leading provider of patient support solutions, has announced the ... which will launch this week. The VMS CNEs will address ... enhance the patient care experience by delivering peer-to-peer education programs ... to help women who have been diagnosed and are being ... ...
(Date:10/11/2017)... ... October 11, 2017 , ... ... has granted orphan drug designation to SBT-100, its novel anti-STAT3 (Signal Transducer and ... of osteosarcoma. SBT-100 is able to cross the cell membrane and bind intracellular ...
(Date:10/10/2017)... ... October 10, 2017 , ... Dr. Bob Harman, founder ... local San Diego Rotary Club. The event entitled “Stem Cells and ... had 300+ attendees. Dr. Harman, DVM, MPVM was joined by two human doctors: ...
Breaking Biology Technology: