Navigation Links
Biological motors sort molecules one by one on a chip

Researchers from Delft University of Technology's Kavli Institute of Nanoscience have discovered how to use the motors of biological cells in extremely small channels on a chip. Based on this, they built a transport system that uses electrical charges to direct the molecules individually. To demonstrate this, the Delft researchers sorted the individual molecules according to their color. Professor Hess of the University of Florida has called the Delft discovery "the first traffic control system in biomolecular motor nanotechnology". The research findings will be published in Science on May 12.

The biological cell is a complex of many different small protein factories. The necessary transportation of materials within the cell occurs across a network of microtubules: long, tubular-shaped proteins that extend in a star-shaped formation from the nucleus of the cell to the walls of the cell. Molecular bio-motors, such as the enzyme kinesin, can walk in small steps (of 8 nanometers) with a load of material along these microtubule-networks and thus provide transport within the cell.

Fascinated by these biological motors, the researchers at Delft University of Technology's Kavli Institute of Nanoscience are currently exploring the possibility of inserting these kinesin-motors and microtubules in an electrically directed transport system that is made by the researchers using nano-fabrication techniques.

The researchers turned the system around: the kinesin-motors are fastened in large quantities on a surface with their 'feet' up; the microtubules (measuring approximately 1 to 15 micrometers in length) were then transported over the 'carpet' of motors. The microtubules are, as it were, 'crowd surfing' over the sea of small kinesin motors. A particular challenge of the research was to ensure beforehand that the microtubule tubes could be transported in a determined direction and were not dislodged by collisions of the motor carpet.

PhD stud ent Martin van den Heuvel, master student Martijn de Graaff and groupleader Professor Cees Dekker have for the first time achieved to control and address individual microtubules. An important step in this was to allow microtubule-transport to occur in small closed liquid channels. This made it possible to apply a strong electrical field locally at the Y-junction in the channels. Because of this, the electrical force could be exerted on the individual microtubules. The researchers discovered that by using this electrical force they could push the front of the microtubule into the determined direction.

To demonstrate this, the researchers allowed a mixture of green and red fluorescent microtubules to arrive at a Y-junction. By changing the direction of the electrical force, depending on the color of the microtubule, the Delft researchers were able to collect the green and red microtubules in different reservoirs.

With their approach to the nano-channels, the researchers killed two birds with one stone. In addition to the possibility of steering individual microtubules, they were able to prevent the microtubules from derailing from their tracks. Incidentally, the Delft researchers discovered that their work contained a third interesting aspect. The closed channels offered the possibility to observe the electrical transport of freely suspended microtubules, thus proving that the speed of the microtubules under an external electrical field is largely dependent on the orientation of the cylinder-shaped molecules. This was the first time that this orientation-dependency of the electrophoretic mobility was observed.

In an accompanying Perspective article in Science, Professor Hess of the University of Florida wrote that the Delft researchers had developed the first traffic control system in biomolecular motor nanotechnology.


'"/>

Source:Delft University of Technology


Related biology news :

1. Another Look Finds Promising Proteomics Test is Not Biologically Plausible
2. Ariadne Genomics Announces the Release of PathwayStudio?Central, Client-Server Software for Biological Pathway Analysis
3. Biologically inspired sensors can augment sonar, vision system in submarines
4. A new way of looking at molecular motors
5. Discovery of agile molecular motors could aid in treating motor neuron diseases
6. One-dimensional diffusion accelerates molecular motors
7. Ferns provide model for tiny motors powered by evaporation
8. Molecular motors and brakes work together in cells
9. Inflammatory molecules released by pollen trigger allergies
10. Medical molecules designed to respond to visible light that can penetrate tissue
11. DNA constraints control structure of attached macromolecules
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:4/24/2017)... April 24, 2017 Janice Kephart ... with  Identity Strategy Partners, LLP (IdSP) , today ... without President Trump,s March 6, 2017 Executive ... , refugee vetting can be instilled with greater confidence, ... now, all refugee applications are suspended by until ...
(Date:4/19/2017)... April 19, 2017 The global ... landscape is marked by the presence of several large ... held by five major players - 3M Cogent, NEC ... accounted for nearly 61% of the global military biometric ... in the global military biometrics market boast global presence, ...
(Date:4/18/2017)... a global expert in SoC-based imaging and computing solutions, has developed ... the company,s hybrid codec technology. A demonstration utilizing TeraFaces ® , ... showcased during the upcoming Medtec Japan at Tokyo Big Sight April ... Vegas Convention Center April 24-27. ... Click here for an image of the M820 ...
Breaking Biology News(10 mins):
(Date:4/28/2017)... USA (PRWEB) , ... April 28, 2017 , ... ... seminar on regulatory compliance requirements for life science products comes to New Orleans, ... structure of the regulatory agencies in Latin America and discuss local cultural nuances ...
(Date:4/28/2017)... ... 28, 2017 , ... Cynvenio Biosystems, Inc. a leader in personalized ... cancer monitoring (NEAT) study in partnership with Allentown, PA-based TME Research . The ... be monitored over two years with Cynvenio’s ClearID Breast Cancer blood test. The study ...
(Date:4/28/2017)... ... April 28, 2017 , ... While things have been quiet ... the company and provide a new outlook for the future. As a continued ... new management with the retirement of Mr. Siegel as CEO. With the new adjustments ...
(Date:4/28/2017)... ... April 28, 2017 , ... KCAS Bioanalytical and Biomarker ... ng/mL lower limit (LLOQ) assay for nicotine and two key metabolites cotinine and ... trace nicotine assay meets additional needs of tobacco industry that need to detect ...
Breaking Biology Technology: