Navigation Links
Biodegradable microspheres deliver time release vaccines, stimulate different immune response

A new vaccine delivery system using microspheres of a biodegradable polymer may not only reduce the need for booster shots in some cases, but also appears to stimulate an immune response that traditional vaccines do not. Researchers from Iowa State University report their findings today at the ASM Biodefense and Emerging Disease Research Meeting.

"Current vaccines are good at producing antibodies that block entry into the cell. In the case of some diseases, such as malaria or tuberculosis, antibody vaccines just aren't effective," says Jenny Wilson-Welder, a lead researcher on the study.

Wilson-Welder and her colleagues initially began their research looking for a way to eliminate the need for booster vaccinations, by developing a vaccine delivery system that released the vaccine into the system slowly over time. They chose a biodegradable polymer, called polyandydride, in a microsphere formulation. This polymer was already being used as a delivery system for a brain cancer drug designed to inhibit tumor growth.

"It's like an Everlasting Gobstopper or a bar of soap. It wears away slowly over time, delivering its payload," says Wilson-Welder.

The researchers vaccinated mice with microspheres loaded with ovalbumin, a protein from chicken eggs, and measured immune reponse. While mice exhibited the expected antibody response, the researchers also noticed something unexpected. The vaccine enhanced another type of immune response known as cellular-mediated immunity (CMI). CMI allows the immune system to identify, target and kill cells that have already become infected, something antibodies can not do.

The determine the cause of this effect, Wilson-Welder and her colleagues next incubated human dendritic cells in the presence of polyanhydride microspheres (without ovalbumin). Dendritic cells are responsible for initiating CMIs.

"We observed that the polymer microspheres were activating dendritic cells," sa ys Wilson-Welder.

The implications of these findings are two-fold, says Wilson-Welder. First, they have shown that polyanhydride microspheres can be used to deliver time-released vaccines. This could lead to the development of single-dose vaccines for diseases that currently require booster innoculations to be most effective, such as tetanus, whooping cough and chicken pox.

"The slow release mechanism of the polymers means that vaccines that currently require multiple doses might need only need a single dose in the future," says Wilson-Welder.

Secondly, the finding that vaccine adjuvants can elicit a CMI provides hope for vaccines against intracellular diseases that we currently don't have effective vaccines for, like malaria, tuberculosis and even AIDS.

"If we understand how an adjuvant activates the dendritic cells, we can start tailoring our vaccines to induce a better cellular response. If we can tailor the immune response, it holds greater promise for vaccines that we do not currently have," says Wilson-Welder.


'"/>

Source:American Society for Microbiology


Related biology news :

1. Biodegradable napkin -- featuring sensitive nanofibers -- may quickly detect biohazards
2. New methods of gene delivery using lasers
3. Recombinant DNA technology may enable oral, rather than injectable, delivery of protein drugs
4. Self-assembled DNA buckyballs for drug delivery
5. New research could help us deliver genes for new bone formation
6. Cookbook recipes would cure disease with nontoxic DNA delivery systems
7. Discarded placentas deliver researchers promising cells similar to embryonic stem cells
8. Bare metal stents deliver gene therapy to heart vessels with less inflammation in animal studies
9. Targeted drug delivery achieved with nanoparticle-aptamer bioconjugates
10. Cellular scale drug delivery from the inside out
11. Wrinkled membranes create novel drug-delivery system
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:3/30/2017)... The research team of The Hong Kong Polytechnic University (PolyU) ... ground breaking 3D fingerprint minutiae recovery and matching technology, pushing contactless ... use in identification, crime investigation, immigration control, security of access and ... ... A research team led by Dr Ajay Kumar ...
(Date:3/29/2017)... 2017  higi, the health IT company that operates ... America , today announced a Series B investment ... EveryMove. The new investment and acquisition accelerates higi,s strategy ... transform population health activities through the collection and workflow ... higi collects and secures data today on behalf of ...
(Date:3/27/2017)... , March 27, 2017  Catholic Health Services ... Management Systems Society (HIMSS) Analytics for achieving Stage ... Model sm . In addition, CHS previously earned ... hospitals using an electronic medical record (EMR). ... high level of EMR usage in an outpatient ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... ... 12, 2017 , ... They call it the “hairy ball.” ... depiction of a system of linkages and connections so complex and dense that ... computer science at Worcester Polytechnic Institute (WPI) and director of the university’s bioinformatics ...
(Date:10/12/2017)... ... October 12, 2017 , ... ... a United States multicenter, prospective clinical study that demonstrates the accuracy of ... capable of identifying clinically significant acute bacterial and viral respiratory tract infections ...
(Date:10/12/2017)... ... October 12, 2017 , ... ... the first-ever genomics analysis platform specifically designed for life science researchers to ... of pioneering researcher Rosalind Franklin, who made a major contribution to the ...
(Date:10/11/2017)... (PRWEB) , ... October 11, 2017 , ... Personal eye wash is a basic first ... eye at a time. So which eye do you rinse first if a dangerous substance ... Plum Duo Eye Wash with its unique dual eye piece. , “Whether its ...
Breaking Biology Technology: