Navigation Links
Beetle-inspired switch uses water for bonding

Imagine this: A tiny, fast switch that uses water droplets to create adhesive bonds almost as strong as aluminum by borrowing a mechanism found in palm beetles.

The new beetle-inspired switch, designed by Cornell University engineers, can work by itself on the scale of a micron -- a millionth of a meter. The switches can be combined in arrays for larger applications like powerful adhesive bonding. Like the transistor, whose varied uses became apparent only following its invention, the uses of the new switch are not yet understood. But the switch's simplicity, smallness and speed have enormous potential, according to the researchers.

"Almost all the greatest technological advances have depended on switches, and this is a switch that is fast and can be scaled down," said Paul Steen, a professor of chemical and biomolecular engineering at Cornell and co-author of a paper published in the Proceedings of the National Academy of Sciences (Vol. 102, No. 34).

Steen dreamed up the idea of the switch after listening to Cornell entomologist Tom Eisner lecture on palm beetles, which are native to the southeastern United States.

Like the beetle, which clings to a palm leaf at adhesive strengths equal to a hundred times its own body weight -- the human equivalent of carrying seven cars -- the switch in its most basic form uses surface tension created by water droplets in contact with a surface, in much the same way as two pieces of wet paper cling together.

When attacked, the palm beetle attaches itself to a leaf until the attacker leaves. It adheres with 120,000 droplets of secreted oil, each making a bridgelike contact between the beetle's feet and the leaf. Each droplet is just a few microns wide. Whereas the beetle controls the oil contacts mechanically, Steen's switch uses water and electricity.

For the switch to make or release a bond created by surface tension, a water droplet moves to the top or bottom of a flat p late surface using electricity from electrodes. The electricity moves positively charged atoms, called ions, in the water through the minute capillaries of a thin disk of porous glass embedded in the plate. The water moves and wells up into a micrometer-sized droplet on the plate surface. The exposed droplet can then stick to another surface. To break the bond, electricity pulls the exposed water back through the capillary pores.

With millimeter-sized water droplets and micron-sized pores, 5 volts can turn the switch on in one second. At the same time, the researchers predict that smaller droplets will require less energy to move and have faster switching times. Steen and his colleagues believe that a switch as small as hundreds of nanometers, close to a billionth of a meter and one-tenth the size of the beetle droplets, is within reach. Researchers could also create large effects from many tiny switches by connecting them in various arrangements, Steen said.

"This new technology bridges the gap between scales as large as our hands and nanoscales," said Steen. "We need devices that allow us to communicate between the two scales."

Co-authors include Michael Vogel, a postdoctoral researcher in Cornell's Department of Chemical and Biomolecular Engineering, and researcher Peter Ehrhard at the Institute for Nuclear and Energy Technologies in Karlsruhe, Germany. Since much of this work was conducted while the three scientists were at the German institute, the patent application was filed in Germany.
'"/>

Source:Cornell University News Service


Related biology news :

1. Scientists ID molecular switch in liver that triggers harmful effects of saturated and trans fats
2. Bad aftertaste? New sensory on/off switch may cure bane of artificial sweetener search
3. Single gene is genetic switch for fly sexual behavior
4. UT Southwestern researchers discover master switch in cell death
5. A dimmer switch for genes
6. Scientists discover the molecular switch for nerve cells insulating jelly rolls
7. Switching to new anti-bacterial targets: Riboswitches
8. Hot-spring bacteria flip a metabolic switch
9. Animal models show that anabolic steroids flip the adolescent brains switch for aggression
10. Master genetic switch found for chronic pain
11. Nano machine switches between biological and silicon worlds

Post Your Comments:
*Name:
*Comment:
*Email:


(Date:12/5/2018)... ... December 05, 2018 , ... ... Photodynamic Therapy symposium 2018, London, England. The 2018 PDT symposium was organized by ... PDT and its benefits in clinical practice across a range of applications in ...
(Date:12/5/2018)... ... 2018 , ... Slone Partners, North America’s leading executive search ... at Karius, Inc. as Chief Commercial Officer. Now responsible for developing, executing, and ... in Redwood City, California and report to CEO Mickey Kertesz Ph.D. , ...
(Date:12/5/2018)... ... 2018 , ... Biolytic Lab Performance Inc. is proud to ... Biolytic’s Molecule Synthesis Platform. , Now restructured with all the same principles ... in oligonucleotide synthesis, the 192c incorporates a multitude of enhancements to new and ...
Breaking Biology News(10 mins):
(Date:11/15/2018)... SAN FRANCISCO (PRWEB) , ... November 14, 2018 ... ... Indiegogo campaign, bringing the world’s first self-learning snore-reduction mask to the public. It ... to a poorer quality of sleep for themselves and their partner. The resulting ...
(Date:11/13/2018)... , ... November 12, 2018 , ... ... state-of-the-art practices in Alpharetta and Sandy Springs, now welcomes new patients for MTM® ... discreet and comfortable alternative to traditional braces in the Sandy Springs and Alpharetta ...
(Date:11/13/2018)... Ore. (PRWEB) , ... November 13, 2018 , ... ... at Bio-Logic Aqua® Research Water Life Science® in Grants Pass, Oregon believes in ... Kleyne and Bio-Logic Aqua® Research Water Life Science® sponsors the Power of Water® ...
(Date:11/9/2018)... ... November 08, 2018 , ... IC System, one ... powered approach to increasing recovery rates by creating a comprehensive contact strategy for ... product developed by NLP Logix, a Jacksonville, Florida-based AI solutions company, and leveraged ...
Breaking Biology Technology: