Navigation Links
Bacterial protein mimics host to cripple defenses

Like a wolf in sheep's clothing, a protein from a disease-causing bacterium slips into plant cells and imitates a key host protein in order to cripple the plant's defenses. This discovery, reported in this week's Science Express by researchers at the Boyce Thompson Institute (BTI) for Plant Research, advances the understanding of a disease mechanism common to plants, animals, and people.

That mechanism, called programmed cell death (PCD), causes a cell to commit suicide. PCD helps organisms contain infections, nip potential cancers in the bud, and get rid of old or unneeded cells. However, runaway PCD leads to everything from unseemly spots on tomatoes to Parkinson's and Alzheimer's diseases.

BTI Scientist and Cornell University Professor of Plant Pathology Gregory Martin studies the interaction of Pseudomonas syringae bacteria with plants to find what determines whether a host succumbs to disease. Martin and graduate student Robert Abramovitch previously found that AvrPtoB, a protein Pseudomonas injects into plants, disables PCD in a variety of susceptible plants and in yeast (a single-celled ancestor of both plants and animals). Abramovitch and Martin compared AvrPtoB's amino acid sequence to known proteins in other microbes and in higher organisms, but found no matches that might hint at how the protein works at the molecular level.

"We had some biochemical clues to what AvrPtoB was doing, but getting the three-dimensional crystal structure was really key," Martin explained. To find that structure, Martin and Abramovitch worked with collaborators at Rockefeller University. The structure of AvrPtoB revealed that the protein looks very much like a ubiquitin ligase, an enzyme plant and animal cells use to attach the small protein ubiquitin to unneeded or defective proteins. Other enzymes then chew up and "recycle" the ubiquitin-tagged proteins.

To confirm that AvrPtoB was a molecular mimic, Martin and Abramovitch altered parts of the protein that correspond to crucial sites on ubiquitin ligase. These changes rendered Pseudomonas harmless to susceptible tomato plants, and made the purified protein inactive. AvrPtoB's function is remarkable not only because its amino acid sequence is so different from other ubiquitin ligases, but also because bacteria don't use ubiquitin to recycle their own proteins.

"An interesting question is where this protein came from," Martin noted. "Did the bacteria steal it from a host and modify it over time, or did it evolve independently? We don't know."

Regardless, the discovery "helps us understand how organisms regulate cell death on a fundamental level," Martin said. AvrPtoB provides a sophisticated tool researchers can use to knock out PCD brought on by a variety of conditions, shedding light on immunity. The protein itself or a derivative might one day be applied to control disease in crops or in people. For now, Martin and Abramovitch are working to find which proteins AvrPtoB acts on, and what role those proteins play in host PCD.


'"/>

Source:Boyce Thompson Institute for Plant Research


Related biology news :

1. UF Researchers Map Bacterial Proteins That Cause Tooth Loss
2. Bacterial genome sheds light on synthesizing cancer-fighting compounds
3. New insight into autoimmune disease: Bacterial infections promote recognition of self-glycolipids
4. Say what? Bacterial conversation stoppers
5. Bacterial switch gene regulates how oceans emit sulfur into atmosphere
6. Bacterial protein shows promise in treating intestinal parasites
7. Bacterial response to oxidation studied as toxin barometer
8. Bacterial walls come tumbling down
9. New, automated tool successfully classifies and relates proteins in unprecedented way
10. New binding target for oncogenic viral protein
11. Controversial drug shown to act on brain protein to cut alcohol use
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:6/2/2016)... June 2, 2016 Perimeter Surveillance ... Unmanned Systems, Physical Infrastructure, Support & Other Service  ... visiongain offers comprehensive analysis of the global ... will generate revenues of $17.98 billion in 2016. ... Inc, a leader in software and hardware technologies for ...
(Date:5/12/2016)... May 12, 2016 WearablesResearch.com , a ... the overview results from the Q1 wave of its ... wave was consumers, receptivity to a program where they ... a health insurance company. "We were surprised ... says Michael LaColla , CEO of Troubadour Research, ...
(Date:4/26/2016)... BANGALORE, India and LONDON ... Infosys Finacle, part of EdgeVerve Systems, a ... ), and Onegini today announced a partnership to ... banking solutions.      (Logo: http://photos.prnewswire.com/prnh/20151104/283829LOGO ... banks to provide their customers enhanced security to ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... June 27, 2016   Ginkgo Bioworks , a ... engineering, was today awarded as one of the ... the world,s most innovative companies. Ginkgo Bioworks is ... the real world in the nutrition, health and ... directly with customers including Fortune 500 companies to ...
(Date:6/23/2016)... ... June 23, 2016 , ... ... of its second eBook, “Clinical Trials Patient Recruitment and Retention Tips.” Partnering with ... in this eBook by providing practical tips, tools, and strategies for clinical researchers. ...
(Date:6/23/2016)... HOUSTON , June 23, 2016 ... agreement with the Cy-Fair Sports Association to serve ... of the agreement, Houston Methodist Willowbrook will provide ... education and connectivity with association coaches, volunteers, athletes ... partner with the Cy-Fair Sports Association and to ...
(Date:6/23/2016)... ... June 23, 2016 , ... Supplyframe, the ... the Supplyframe Design Lab . Located in Pasadena, Calif., the Design Lab’s ... how hardware projects are designed, built and brought to market. , The Design ...
Breaking Biology Technology: