Navigation Links
Attacks of King George III's madness linked to key metabolism molecule

PGC-1 mediates effects of nutrition on blood disease porphyria

Dana-Farber Cancer Institute researchers say they have uncovered a molecular explanation for the episodic attacks of irrational and demented behavior in porphyria, the disease believed to have afflicted "Mad" King George III, the British ruler blamed for the loss of the American colonies in the Revolutionary War.

The mental and physical symptoms of porphyria, a rare genetic blood disease which a number of modern researchers believe plagued King George intermittently throughout his tumultuous reign, can be brought on by fasting and exposure to certain drugs, and is successfully treated by feedings of sugar and high-carbohydrate food. A biological explanation for these nutritional effects has been lacking.

The Dana-Farber scientists say in a report featured on the cover of the August 26 issue of Cell that the nutritional component of porphyria involves a key master metabolic molecule, PGC-1 alpha, in cells of the liver. The gene that makes PGC-1 alpha was isolated in 1998 in the laboratory of Bruce Spiegelman, PhD, who is senior author of the new report. Postdoctoral fellow Christopher Handschin, PhD, is lead author.

"We've explained how porphyria symptoms can occur in episodic attacks triggered by fasting, and why they can be treated by feeding carbohydrates and glucose," says Spiegelman.

King George III suffered from five prolonged, severe episodes of madness during his rule from 1760 to 1820, a period in which he both expanded the British Empire and so stubbornly refused to negotiate with the rebellious American Colonists that they felt only a revolution against England could resolve their grievances. The symptoms recorded at the time sound to modern diagnosticians as typical of porphyria, though the King's attacks were unusual in their severity and that they didn't appear until he was 50.

Several types of porphyria exist, all of them stemming from inher ited mutations that disrupt the body's manufacture of heme. A reddish pigment that contains iron, heme is a building block of the oxygen-carrying hemoglobin in red blood cells. The complex synthesis requires eight different enzymes, and when any of them is deficient because of a mutation, the process is blocked. The resulting back up of "precursor" substances is toxic, and can cause a range of symptoms, including dark colored urine, abdominal pain, nausea, vomiting, constipation, weakness in the limbs, and psychiatric symptoms such as confusion, fits and hallucinations.

Earlier this year, the British journal Lancet published a report saying that a test of strands of George III's hair contained arsenic, which can provoke porphyria attacks. The authors of that report suggested that, ironically, he may have been exposed to arsenic contamination of a substance his doctors gave him as treatment.

PGC-1 alpha is a "transcriptional coactivator" that acts as an on-off switch for a number of genes involved in manufacture of glucose in the liver and in the "heating system" of brown fat cells that help prevent damage from cold in certain animals.

With their intimate knowledge of PGC-1 alpha and its varied roles in energy metabolism, the Dana-Farber researchers wondered if it might be involved in porphyria, since PGC-1 alpha is a regulator of heme manufacture in the liver. One of its actions is controlling the activity of the ALAS-1 gene that makes a protein that's crucial to the normal manufacture of heme. A defect in this genetic signaling pathway could cause ALAS-1 to accumulate in high levels, leading to the symptoms of porphyria attacks.

"We found that PGC-1 alpha is an important factor controlling the expression of ALAS-1 in the fasted and fed liver," the authors write. "Moreover, we showed that hepatic [in the liver] PCG-1 alpha is a major determinant of the severity of acute porphyric attacks in mouse models of chemical porphyria."

< p>Through a series of experiments with normal mice and those engineered to lack the PGC-1 alpha gene, the researchers said they have provided "a clear-cut mechanism" linking fasting to an increase in PGC-1 alpha, and, in turn, overactivity of the ALAS-1 gene. The therapeutic effect of glucose and high-carbohydrate diets on porphyria, they add, occurs because glucose causes the pancreas to make more insulin, which results in suppression of the PGC-1 alpha gene.

The findings suggest that patients with porphyria should avoid any drugs or foods that turn on PGC-1 alpha activity in the liver, the researchers say. There could be implications for treatment as well: high-carbohydrate diets aren't a satisfactory therapy for affected patients as it make them gain, and fasting in order to lose the weight risks provoking attacks. Hopefully, the researchers say, it might be possible to develop more specific treatments now that the mechanism underlying the symptoms of porphyria is better understood.


'"/>

Source:Dana-Farber Cancer Institute


Related biology news :

1. Stem Cell Research Shows Potential for Replacing Tissue Damaged in Heart Attacks
2. Newly discovered virus linked to childhood lung disorders and Kawasaki disease
3. Low level of extinction during ice age linked to adaptability
4. Improved statistical tools reveal many linked loci
5. Scientists at Galileo Pharmaceuticals confirm inflammatory response linked to glucose levels
6. Gene controlling circadian rhythms linked to drug addiction
7. Physical and functional interaction of key cell growth molecules linked to cancer
8. VCU Massey Cancer Center study shows enzyme linked to spread of breast cancer cells
9. Naturally occurring asbestos linked to lung cancer
10. Disappearing arctic lakes linked to climate change
11. Genes linked to treatment resistance in children with leukemia
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:4/17/2017)... 2017 NXT-ID, Inc. (NASDAQ: NXTD ) ... of its 2016 Annual Report on Form 10-K on Thursday April ... ... in the Investor Relations section of the Company,s website at ... at http://www.sec.gov . 2016 Year Highlights: ...
(Date:4/11/2017)... BROOKLYN, N.Y. , April 11, 2017 /PRNewswire-USNewswire/ ... identical fingerprints, but researchers at the New York ... University College of Engineering have found that partial ... fingerprint-based security systems used in mobile phones and ... previously thought. The vulnerability lies in ...
(Date:4/5/2017)... April 4, 2017 KEY FINDINGS ... expand at a CAGR of 25.76% during the forecast ... the primary factor for the growth of the stem ... https://www.reportbuyer.com/product/4807905/ MARKET INSIGHTS The global stem cell ... application, and geography. The stem cell market of the ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... BioMarketing, a leading provider of patient support solutions, has announced ... network, which will launch this week. The VMS CNEs will ... to enhance the patient care experience by delivering peer-to-peer education ... professionals to help women who have been diagnosed and are ... ...
(Date:10/11/2017)... ... October 11, 2017 , ... Singh Biotechnology today announced that ... SBT-100, its novel anti-STAT3 (Signal Transducer and Activator of Transcription 3) B VHH13 ... cross the cell membrane and bind intracellular STAT3 and inhibit its function. Dysregulation ...
(Date:10/10/2017)... California (PRWEB) , ... October 10, 2017 , ... Dr. ... speaking at his local San Diego Rotary Club. The event entitled ... Diego, CA and had 300+ attendees. Dr. Harman, DVM, MPVM was joined by ...
(Date:10/10/2017)... ... October 10, 2017 , ... The Pittcon Program ... honoring scientists who have made outstanding contributions to analytical chemistry and ... 2018, the world’s leading conference and exposition for laboratory science, which will be ...
Breaking Biology Technology: