Navigation Links
Animal brains 'hard-wired' to recognize predator's foot movements, Queen's study suggests

The reason people can approach animals in the wild more easily from a car than by foot may be due to an innate "life detector" tuned to the visual movements of an approaching predator's feet, says Queen's University psychologist Niko Troje.

"We believe this visual filter is used to signal the presence of animals that are propelled by the motion of their feet and the force of gravity," suggests Dr. Troje, Canada Research Chair in Vision and Behavioural Sciences.

Conducted with Dr. Cord Westhoff from the Ruhr-Universität Bochum in Germany, the study was funded by the Canada Foundation for Innovation and the German Volkswagen Foundation. It will be published on-line April 18 in the international journal Current Biology.

The researchers suggest this low level locomotion detector is part of an evolutionary old system that helps animals detect quickly ?even on the periphery of their visual field ?whether a potential predator or prey is nearby. "Research on newly hatched chicks suggests that it works from very early on in an animal's development," says Dr. Troje. "It seems like their brains are 'hard wired' for this type of recognition."

One impetus for starting this research several years ago was a question by his young daughter, who asked him why she could get so much closer to wild rabbits in their neighborhood while riding on her bicycle rather than on foot. "I didn't have an answer for her then. Now, I think I have one," he says.

Dr. Troje's Motion Capture Laboratory at Queen's uses high speed cameras to track the three-dimensional trajectories of small reflective markers attached to the central joints of a person's body. When the subject moves, these seemingly unstructured white marker dots become organized into meaningful images, from which observers can determine the gender, body build, emotional state, and other attributes.

In this study, Dr. Troje's team used "point-light sequence" videos to display the elec tronically captured motion of cats, pigeons and humans. People were tested on whether they could tell the direction of movement when these cues were changed.

Scrambling the dots didn't create a problem, but when the image was inverted, observers were unable to say if the animal was moving to the right or left. The researchers conclude that foot movement is an independent, important visual cue that another animal is nearby.

"The observation that it is relatively easy to get close to wild animals in a car, a canoe, or a similar vehicle might be due to the absence of the typical movement of the feet," says Dr. Troje. Similarly, the creeping movement of a hunting cat can be interpreted in terms of disguising the ballistic component in its locomotion, he adds.

"Our finding might also provide an explanation for seemingly irrational phobias towards animals that don't fit the ballistic movement pattern of a proposed 'life detector'," he says. "Snakes, insects and spiders, or birds can generate pathological reactions not observed in response to 'normal' animals."


'"/>

Source:Queen's University


Related biology news :

1. Affymetrix Unveils Plans to Double Plant and Animal Genome Microarray Offering
2. Study Links Ebola Outbreaks To Animal Carcasses
3. Gene Therapy For Parkinsons Disease Moves Forward In Animals
4. Transplanting Animal Organs Could Soon Be A Reality
5. Animal models show that anabolic steroids flip the adolescent brains switch for aggression
6. Animals can change genes quickly to keep up with viral ingenuity
7. Birds brains reveal source of songs
8. Supercomputers to focus brains on AIDS dilemma
9. Mice brains shrink during winter, impairing some learning and memory
10. Divergent life history shapes gene expression in brains of salmon
11. Jumping genes contribute to the uniqueness of individual brains
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:12/2/2016)... The report "Biometric Vehicle Access ... (Iris Recognition System), Vehicle Type (Passenger Car, Battery ... 2021", published by MarketsandMarkets, the market is estimated ... is projected to grow to USD 854.8 Million ...      (Logo: http://photos.prnewswire.com/prnh/20160303/792302) ...
(Date:11/29/2016)... Nov. 29, 2016 BioDirection, a privately held ... for the objective detection of concussion and other traumatic ... successfully completed a meeting with the U.S. Food and ... test Pre-Submission Package. During the meeting company representatives reviewed ... a precursor to commencement of a planned pilot trial. ...
(Date:11/24/2016)... , Nov. 23, 2016 Cercacor today introduced ... and their trainers non-invasively measure hemoglobin, Oxygen ... Rate, and Respiration Rate in approximately 30 seconds. Smaller ... easy and immediate access to key data about their ... a training regimen. Hemoglobin carries oxygen ...
Breaking Biology News(10 mins):
(Date:12/4/2016)... ... December 02, 2016 , ... A proposed ... businesses in federally funded research and development is welcome news for the photonics ... photonics . , As part of the National Defense Authorization Act (NDAA) compromise ...
(Date:12/2/2016)... , Dec. 2, 2016 More than $4.3 ... 11th Double Helix Medals dinner ( DHMD ). The gala was held ... New York City and honored Alan ... contributions, respectively, to health and medicine and the public understanding ... in 2006, the event has raised $40 million for ...
(Date:12/2/2016)... ... December 01, 2016 , ... ACEA Biosciences, Inc. announced today that it will ... AC0010 at the World Conference on Lung Cancer 2016, taking place in Vienna, Austria ... I/II clinical trials for AC0010 in patients with advanced non-small cell lung cancer harboring ...
(Date:12/2/2016)... ... 01, 2016 , ... DrugDev believes the only way to achieve ... experience. All three tenets were on display at the 2nd Annual DrugDev User Summit ... sponsor, CRO and site organizations to discuss innovation and the future of clinical research. ...
Breaking Biology Technology: