Navigation Links
An HIV Protein Plays a Surprising Role in Gene Activation

Retroviruses are expert manipulators when it comes to co-opting their host's cellular resources. A great deal of human complexity stems from the vast repertoire of proteins and mechanisms dedicated to the business of regulating gene expression, and retroviruses like HIV have evolved myriad ways of redirecting that machinery to their own benefit.

Humans and other eukaryotes have three types of RNA polymerases, each charged with transcribing different types of genetic elements. RNA polymerase II transcribes protein-coding genes. RNA polymerases join with so-called general transcription factors to form a pre-initiation complex (PIC) on the gene's promoter, where it binds to region rich in thymine (T) and adenine (A) named the TATA box. The first transcription factor to associate with the TATA box is called TFIID, a large protein complex containing a protein that binds the TATA box (aptly named the TATA-box-binding protein, or TBP) and several cofactors called TBP-associated factors (TAFs). PIC assembly sometimes also requires activator proteins, which can enhance transcriptional activity by supporting proper elongation of nascent transcripts.

Tat, an activator encoded in the HIV genome, is required for HIV gene activation and viral replication. It affects these processes, the current model holds, by stimulating transcript elongation and increasing RNA polymerase's processing efficiency. In a new study, Tamal Raha, Grace Cheng, and Michael Green work with human cell lines and find evidence that Tat can also stimulate PIC assembly.

While most transcription factors bind to DNA, Tat binds to an area at the end of newly emerging viral RNA called the transactivation response element (TAR). Once bound, Tat recruits a cellular complex called P-TEFb (consisting of two subunits) to the HIV promoter, and enhances RNA polymerase's transcribing capacity. Previous studies in yeast had shown that activators appear to stimulate transcription complex assembly, le ading the authors to ask whether Tat could play a similar role.

To study this question in living human cells, Green and colleagues turned to chromatin immunoprecipitation, a technique that detects proteins bound (directly or indirectly) to DNA. Working with three well-known effectors of transcription—an activator (Gal4-VP16), a transcriptional enhancer, and another viral activator called E1a—the authors show that what's true for yeast also holds for mammals, or at least for the human cell lines investigated here. Each effector was required for PIC assembly, which was in turn required to activate transcription.

The big surprise came in the next round of experiments, which explored Tat's influence on transcription and PIC assembly on the HIV promoter. As expected, transcription factors were “virtually undetectable?at the core promoter in the absence of Tat. Adding Tat recruited all the usual transcription factors to the promoter and increased transcription. But none of the TAFs that normally associate with TFIID were found. When the authors used the activator Gal4-VP16 to initiate HIV transcription, every one of the 11 TAFs studied appeared. None of them did so in the presence of Tat, suggesting that Tat-mediated HIV transcription doesn't rely on TAFs. Green and colleagues confirmed this hypothesis in experiments showing that Tat-driven transcription proceeded as usual in cells lacking TAFs. And they demonstrated that it is Tat—along with its cofactor P-TEFb, which is normally bound to RNA through Tat—that recruits the TAF-deficient TBP.

Altogether, these results show a surprising new role for Tat in stimulating assembly of a transcription complex. What's more, the complex lacks the TAFs typically linked to TBP in mammalian cells. Because their experiments analyzed only transcription complex assembly, the authors are careful to note that Tat may well stimulate assembly in addition to promoting transcription elongation. And it may be this resour cefulness that makes Tat such a potent activator—and HIV so hard to control. (For more on Tat's role in HIV transcription, see “Novel Enzyme Shows Potential as an Anti-HIV Target?[DOI: 10.1371/journal.pbio.0030074] and “A New Paradigm in Eukaryotic Biology: HIV Tat and the Control of Transcriptional Elongation?[DOI: 10.1371/journal.pbio.0030076].)


'"/>

Source:PLoS Biology


Related biology news :

1. Quantum Dots Research Leads to New Knowledge about Protein Binding in Plants
2. Protein discovery could unlock the secret to better TB treatment
3. Researchers Uncover Key Step In Manufacture of Memory Protein
4. Protein Packages Found To Activate Genes; May Be What Regulates Development And Disease
5. New SARS Protein Linked To Important Cell Doorway
6. The Shapes Of Life: NIGMS Project Yields More Than 1,000 Protein Structures
7. PANTHER Protein Classification System Database 5.0
8. Duke Chemists Isolating Individual Molecules Of Toxic Protein In Alzheimers, Parkinsons Disease
9. Newly Discovered Compound Blocks Known Cancer-Causing Protein
10. UF Researchers Map Bacterial Proteins That Cause Tooth Loss
11. Protein offers way to stop microscopic parasites in their tracks
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:6/16/2016)... 16, 2016 The global ... to reach USD 1.83 billion by 2024, according ... Inc. Technological proliferation and increasing demand in commercial ... to drive the market growth.      ... The development of advanced multimodal techniques for biometric ...
(Date:6/7/2016)... , June 7, 2016  Syngrafii Inc. ... a business relationship that includes integrating Syngrafii,s patented ... branch project. This collaboration will result in greater ... the credit union, while maintaining existing document workflow ... http://photos.prnewswire.com/prnh/20160606/375871LOGO ...
(Date:6/2/2016)... Perimeter Surveillance & Detection Systems, ... Infrastructure, Support & Other Service  The latest ... comprehensive analysis of the global Border Security market ... of $17.98 billion in 2016. Now: In ... in software and hardware technologies for advanced video surveillance. ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... June 27, 2016  Global demand for enzymes ... through 2020 to $7.2 billion.  This market includes ... cleaning products, biofuel production, animal feed, and other ... and biocatalysts). Food and beverages will remain the ... increasing consumption of products containing enzymes in developing ...
(Date:6/27/2016)... CA (PRWEB) , ... June 27, 2016 , ... ... for clinical trials, announced today the Clinical Reach Virtual Patient Encounter CONSULT ... care circle with the physician and clinical trial team. , Using the CONSULT module, ...
(Date:6/27/2016)... 27, 2016   Ginkgo Bioworks , a leading ... was today awarded as one of the World ... world,s most innovative companies. Ginkgo Bioworks is engineering ... real world in the nutrition, health and consumer ... with customers including Fortune 500 companies to design ...
(Date:6/24/2016)... (PRWEB) , ... June 24, 2016 , ... Researchers at ... most commonly-identified miRNAs in people with peritoneal or pleural mesothelioma. Their findings are the ... read it now. , Diagnostic biomarkers are signposts in the blood, lung fluid ...
Breaking Biology Technology: