Navigation Links
Algal protein in worm neurons allows remote control of behavior by light

By introducing expression of a special green-algae gene into neurons of the tiny, transparent nematode C. elegans, researchers have been able to elicit specific behavioral responses by simply illuminating animals with blue light. The work paves the way for better understanding of how neurons communicate with each other, and with muscles, to regulate behavior in intact, living organisms. Generally speaking, detailed information about the activity and function of specific neurons during particular behaviors has been difficult to achieve in undissected animals.

The new findings are reported by Alexander Gottschalk and colleagues at Goethe-University Frankfurt and at the Max Planck Institute for Biophysical Chemistry, also in Frankfurt.

In their new study, the researchers employed a light-sensitive protein from the green alga Chlamydomonas reinhardtii. This protein, channelrhodopsin-2 (ChR2), sits in cell membranes, where it gates the flow of certain ions from one side of the membrane to the other. Such so-called channel proteins play central roles in the activities of neurons and muscle cells, and while some channel proteins are sensitive to chemicals or electrical signals, ChR2 and its relatives are controlled directly by certain wavelengths of light, making them ideal for remote control in the laboratory.

In their experiments, the researchers took advantage of the light sensitivity of the algal channel protein by introducing expression of a modified form of ChR2 in specific C. elegans neurons and muscle cells. The researchers found that when this form of ChR2 was expressed in muscle cells, blue-light activation of the protein was sufficient to cause strong contraction of the muscle. They found that muscle contraction was simultaneous with light exposure.

The researchers went on to show that expression of the engineered ChR2 in mechanosensory neurons, which respond to touch by activating a reflex that causes worms to back up, was suffic ient to prompt the backing behavior in response to blue-light exposure. In fact, the ChR2 expression in mechanosensory neurons allowed the backing behavior to occur (in response to light) even in mutant worms that lacked the C. elegans ion channel that normally mediates backing behavior in response to touch.

The researchers performed electrophysiological experiments to show that the effects they observed were indeed due to the inward flow of ions caused by activation of the ChR2 protein by light; this inward ion flow persisted for the duration of blue-light exposure.

Future work may include studies using forms of ChR2 or related proteins that are sensitive to different wavelengths of light; by allowing remote-control activation of different neurons and muscle cells within an individual animal, such approaches could aid in understanding the circuitry and control of complex behaviors.


'"/>

Source:Cell Press


Related biology news :

1. Harmful Algal Blooms monitored from space in Chile
2. New, automated tool successfully classifies and relates proteins in unprecedented way
3. New binding target for oncogenic viral protein
4. Controversial drug shown to act on brain protein to cut alcohol use
5. Timing is everything: First step in protein building revealed
6. UWs Rosetta software to unlock secrets of many human proteins
7. Researchers find how protein allows insects to detect and respond to pheromones
8. Signaling protein builds bigger, better bones in mice
9. Ancient olfaction protein is shared by many bugs, offering new pest control target
10. Automatic extraction of gene/protein biological functions from biomedical text
11. Discovery of key proteins shape could lead to improved bacterial pneumonia vaccine
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:10/4/2017)... -- GCE Solutions, a global clinical research organization (CRO), announces the launch ... October 4, 2017. Shadow is designed to assist medical writers and ... of the European Medicines Agency (EMA) in meeting the requirements for ... ... ...
(Date:6/30/2017)... Va. , June 30, 2017 ... leading developer and supplier of face and eye ... ATA Featured Product provider program. ... an innovative way to monitor a driver,s attentiveness ... greatly from being able to detect fatigue and ...
(Date:5/16/2017)... 16, 2017  Veratad Technologies, LLC ( www.veratad.com ), ... and identity verification solutions, announced today they will participate ... May 15 thru May 17, 2017, in ... Trade Center. Identity impacts the lives ... today,s quickly evolving digital world, defining identity is critical ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... ... , ... Disappearing forests and increased emissions are the main causes of the ... Especially those living in larger cities are affected by air pollution related diseases. , ... pollution-affected countries globally - decided to take action. , “I knew I had to ...
(Date:10/10/2017)... Philadelphia, PA (PRWEB) , ... October 10, 2017 ... ... University City Science Center’s FirstHand program has won a US2020 STEM Mentoring Award. ... accept the award for Excellence in Volunteer Experience from US2020. , US2020’s mission ...
(Date:10/10/2017)... ... October 10, 2017 , ... The Pittcon Program ... honoring scientists who have made outstanding contributions to analytical chemistry and ... 2018, the world’s leading conference and exposition for laboratory science, which will be ...
(Date:10/9/2017)... ... October 09, 2017 , ... ... medical journal, Epilepsia, Brain Sentinel’s SPEAC® System which uses the surface electromyography ... generalized tonic-clonic seizures (GTCS) using surface electromyography (sEMG). The prospective multicenter phase ...
Breaking Biology Technology: