Navigation Links
Advance helps explain stem cell behavior

Biochemists at Oregon State University have developed a new method to identify the "DNA-binding transcription factors" that help steer stem cells into forming the wide variety of cells that ultimately make up all the organs and parts of a living vertebrate animal.

The findings were made using mouse embryonic spinal cord as a model, and will be announced this week in Proceedings of the National Academy of Sciences, a professional journal.

The research is an important step towards understanding stem cell behavior, how cellular development is controlled, and how a single cell ?which has the genetic code within it to become any cell in the body ?is told what to become, where to go, and what metabolic function to perform.

Fundamental discoveries such as this, experts say, could ultimately lead to the ability to simulate and possibly control the early developmental process, manipulating stem cells in a way that would help address disease problems, injuries, failing organs or other medical issues.

"If you have an electrical problem in a car, you can repair it a lot easier if you have a wiring diagram," said Michael Gross, an assistant professor of biochemistry and biophysics at OSU. "In a way that's what we're trying to do here, except we're trying to repair or create a certain kind of cell. To do that you need a blueprint of how these processes work, and this will help us create that blueprint."

Even though the processes of cellular development are understood in a broad sense, the detailed biochemistry that underlies and controls these processes is still poorly defined. The overall process appears to be incredibly complex with many pieces and "combinatorial interactions."

Still unknown is exactly what causes certain genes to be expressed. In other words, out of the thousands of genes that could direct the formation of a cell in many different directions, only a subset actually get turned on and become operative in each type of cell. And beyond that, the newly-formed cells then need to arrange themselves in distinct patterns to perform life functions.

"It's clear that there is an extended sequence of steps which turn some genes on and others off, allowing a cell to become a liver cell, for instance, rather than a brain cell," said Chrissa Kioussi, an OSU assistant professor of pharmacology and co-author on the study. "We were able to use a system of microarray comparisons that monitored the expression of genes and more quickly gives us an idea of how this process is working, and how patterns of development occur."

The studies were done in embryonic spinal cord in mice, although the same process ultimately takes place during development of any organ or bodily system, the researchers said. The research identified the subset of genes involved in producing the various types of spinal cord cells ?there may be 10s to 100s of cell types just in the spinal cord. The cell types are created very quickly in early embryonic development by a pattern formation mechanism, and then mature more slowly as the central nervous system creates the functional neural circuits.

Understanding this pattern formation mechanism will be essential to the ultimate use of stem cells in medical research and disease treatment, the scientists said. Ideally, researchers would like to create a "transcriptional network model" that simulates all of the complex and interactive steps in this patterning process, Gross said.

Much of this process happens during a surprisingly short time and at very early stages of embryonic development. In mice, for instance, virtually all of the types of cells are formed in 12 days, during what would correspond to a fraction of the "first trimester" of the human gestational period, as genetic mechanisms guide the "readout" of DNA and control the formation of different types of cells. The cell types themselves are created well before they are "wired togethe r" to create functional organs and bodily systems.

The same basic process takes place in humans, scientists say. In fact, the process is so important and fundamental to life that it has been conserved through millions of years of evolution, and is largely the same among vertebrate animal species, whether they are fish, horses, mice or humans.

Once the process is more fully understood, it should be much more feasible to influence and control it, researchers say. If the task were spinal cord repair, for instance, the goal would be to influence cells to become certain types of spinal cord cells. This area of "molecular medicine" is one of the fastest growing fields of research today, and may ultimately lead to cures or treatments for conditions now thought to be incurable.

"You can't attempt to cure a disease or repair a problem if you don't know what molecular players are involved," Gross said. "That's what we're moving towards. We now have a better idea of some of the key components in this process."

Source:Oregon State University

Related biology news :

1. Applied Biosystems Introduces Advanced Gene Expression Service Provider Program
2. Advances in the characterisation of the oyster mushroom genes
3. Advancements In Genomics Foster Deep Sea Discoveries
4. Bevacizumab Combined With Chemotherapy Improves Progression-Free Survival for Patients With Advanced Breast Cancer
5. Advanced genomics and proteomics improve the diagnosis and treatment of a deadly lung disease
6. Jumping gene helps explain immune systems abilities
7. Protein helps regulate the genes of embryonic stem cells
8. Scientists reveal the shape of a protein that helps retroviruses break into cells
9. Thai spice helps cut blood sugar swings
10. Chemists synthesize molecule that helps body battle cancers, malaria
11. Ancient DNA helps clarify the origins of two extinct New World horse species

Post Your Comments:

(Date:11/19/2015)... -- Although some 350 companies are actively involved in molecular ... according to Kalorama Information. These include Roche Diagnostics, Hologic, Abbott ... of the 6.1 billion-dollar molecular testing market, according to ... Diagnostic s .    ... one company and only a handful of companies can ...
(Date:11/17/2015)... Paris , qui ... Paris , qui s,est tenu du ... leader de l,innovation biométrique, a inventé le premier scanner ... sur la même surface de balayage. Jusqu,ici, deux scanners ... les empreintes digitales. Désormais, un seul scanner est en ...
(Date:11/12/2015)... Nov. 12, 2015  A golden retriever that stayed ... dystrophy (DMD) has provided a new lead for treating ... the Broad Institute of MIT and Harvard and the ... . Cell, pinpoints a protective ... the disease,s effects. The Boston Children,s lab of ...
Breaking Biology News(10 mins):
(Date:11/25/2015)... PUNE, India , November 26, 2015 /PRNewswire/ ... The Global Biobanking Market 2016 - 2020 ... biobanks by maintaining integrity and quality in long-term ... and enabling long-term cost-effectiveness. Automation minimizes manual errors ... improves the technical efficiency. Further, it plays a ...
(Date:11/25/2015)... , November 25, 2015 Studies ... and human plaque and pave the way for more effective ... in cats     --> ... commonly diagnosed health problems in cats, yet relatively little was ... Two collaborative studies have been conducted by researchers from the ...
(Date:11/25/2015)... 25, 2015 /PRNewswire/ - Aeterna Zentaris Inc. (NASDAQ:  AEZS; ... and prospects remain fundamentally strong and highlights the ... recently received DSMB recommendation to continue the ZoptEC ... of the final interim efficacy and safety data ... in men with heavily pretreated castration- and Taxane-resistant ...
(Date:11/25/2015)... 2015 The Global Genomics ... professional and in-depth study on the current state ... ) , The report ... definitions, classifications, applications and industry chain structure. The ... markets including development trends, competitive landscape analysis, and ...
Breaking Biology Technology: