Navigation Links
Adult stem cells aid recovery in animal model of cerebral palsy

Have you ever wondered how the myriad insect forms—beetles, flies, dragonflies, mosquitoes, grasshoppers, ants, wasps, bees, and countless others—evolved?

Insects make up 75% of all species known. The large number of insect species is probably a result of a combination of one or more factors: a high rate of formation of new species, or speciation, an ability to adapt to new environments and exploit new ecological niches, and a lower rate of extinction. Speciation, adaptation, and extinction are all controlled by the interplay between genetic and environmental factors. Understanding the genetic changes that lead to the formation of new species is an important area of research in evolutionary biology.

In a new study, Thomas Turner, Matthew Hahn, and Sergey Nuzhdin worked with the malaria mosquito Anopheles gambiae to uncover genes that may be driving speciation. A. gambiae exists in multiple forms that may be in the early stages of differentiating into separate species; on the other hand, they may be partially differentiated, co-existing races that could give us valuable information on genes responsible for racial differences in mosquitoes. Turner and colleagues focused on two forms, A. gambiae M and A. gambiae S, that sometimes mate and create hybrid forms in nature. While it's unclear whether the forms can produce fertile hybrid offspring in the wild, the progeny of lab matings appear to have no problems with fertility. This suggests that individuals either naturally prefer to mate with others of their own form, or that there must be environmental and/or genetic conditions that are not favorable for the survival of hybrid progeny in nature.

To study the genetic underpinnings of speciation, the researchers used DNA microarrays to identify global differences in the mosquito genomes. Using a combination of gene chips, statistics, and computational biology, Turner and colleagues found that the M and S genomes differ at just three regions. The rese archers suggested that genes present here may be responsible for early speciation. These three “speciation islands?in the genome contain 67 predicted genes. In a preliminary analysis of seven of these genes, Turner and colleagues identified five that are different between the two Anopheles forms; these include genes that play a role in a range of cellular processes, including energy metabolism, response to sudden increases in temperature (heat shock), and ion transport across cell membranes. Future work focusing on the 67 genes hypothesized to reside in the divergent regions should yield interesting clues to the identity of genes that drive speciation, and the mechanism by which they do so.

This is a significant finding in the field of speciation research: in terms of methodology, this study shows that DNA microarrays can be used to identify regions of the genome that are different between two diverging species, allowing researchers to home in on potentially interesting genes. This study also shows that in spite of possible cross-flow of genetic material (natural hybrids between the two forms are found at a low frequency) between two populations, the populations can still be accumulating differences in their genomes—differences that could eventually lead to the formation of new species. Comparing results in Anopheles and the well-studied insect model Drosophila, in which scientists have also started identifying “speciation genes,?should tell us if similar genes are employed repeatedly in different genera during the formation of new species.


'"/>

Source:


Related biology news :

1. New Finding May Aid Adult Stem Cell Collection
2. Adult stem cells are touchy-feely, need environmental clues
3. Adult stem cell research at UB targets damaged hearts
4. Adults who go to bed lonely get stress hormone boost next morning
5. Wisconsin scientists grow critical nerve cells
6. Spleen may be source of versatile stem cells
7. Researchers discover way to make cells in the eye sensitive to light
8. Priming embryonic stem cells to fulfill their promise
9. Lack of enzyme turns fat cells into fat burners
10. Poor prenatal nutrition permanently damages function of insulin-producing cells in the pancreas
11. Elusive HIV shape change revealed; Key clue to how virus infects cells
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:2/3/2017)... 2017 A new independent identity strategy consultancy ... (IdSP) . Designed to fill a critical niche in ... founding partners Mark Crego and Janice ... in identity expertise that span federal governments, the 9/11 ... Crego-Kephart combined expertise has a common theme born from ...
(Date:2/2/2017)... 1, 2017  Central to its deep commitment ... worldwide, The Japan Prize Foundation today announced the ... pushed the envelope in their respective fields of ... scientists are being recognized with the 2017 Japan ... only contribute to the advancement of science and ...
(Date:1/30/2017)... 2017   Invitae Corporation (NYSE: ... companies, today announced that it will report its fourth ... guidance on Monday, February 13, 2017, and Invitae,s management ... 4:45 p.m. Eastern / 1:45 p.m. Pacific. ... review financial results, guidance, and recent developments and will ...
Breaking Biology News(10 mins):
(Date:2/23/2017)... ... February 23, 2017 , ... ... evaluation of multiple immunoassay-based threat detection technologies by researchers from the Pacific ... biosensor threat detection technology was found to have the best level of ...
(Date:2/23/2017)... ... ... Today, researchers can fast-track sample collection and analysis for ... or SNPs of interest) using one, easy-to-collect saliva sample. With the addition of ... and other relevant biomarkers can be extensively studied through a non-invasive sample type. ...
(Date:2/23/2017)... , Feb. 23, 2017  Capricor Therapeutics, Inc. (NASDAQ: CAPR), ... medical conditions, today announced that Linda Marbán, Ph.D, president and ... investor conferences: Cowen and Company 37th ... am ET Boston, MA ... 9:00 am PT (12:00 pm ET) Dana Point, ...
(Date:2/23/2017)... FRANCISCO , Feb. 23, 2017   ViaCyte, ... Type 1, a not-for-profit advocacy and education group for ... grant from Beyond Type 1 to support ViaCyte,s efforts ... other insulin-requiring diabetes.  For more than ... cell replacement therapies with a focus on the treatment ...
Breaking Biology Technology: