Navigation Links
A simple feedback resistor switch keeps latent HIV from awakening

Upon entering a cell, a virus often becomes dormant, turning off its genes and laying low until awakened by som e trigger from its environment. When that trigger is pulled, the virus quickly ramps up production of proteins through built-in positive-feedback loops that turn up gene transcription. (In positive feedback, production of something stimulates more production of that thing, resulting in exponential, or faster, growth.) If the viral environment were perfectly regulated and viral gene expression perfectly silenced during latency, this system would be foolproof. But this is almost never the case--there is always noise and always the potential for some low level of erroneous transcription. This poses a problem for the virus--how does it prevent stray transcription from erupting into full-blown activation?

Certain bacterial viruses manage this problem by encoding intricate repressor circuits that efficiently block transcription. But animal viruses, specifically HIV, appear to lack similar repressor circuits. In a new study, published online in the open access journal PLoS Biology, Leor Weinberger and Thomas Shenk propose that some animal viruses, including HIV, regulate their potential for positive feedback and maintain latency by successively modifying and dissipating, or introducing a resistor into, the main activator of transcription.

HIV's transcriptional activator, the Tat gene, is encoded in the HIV genome. Once Tat is transcribed, it can rapidly increase transcription not only of itself, but also of other genes that ultimately lead to viral replication. Thus, the Tat protein acts like a molecular switch, making it a likely target for regulating latency. In some kinds of molecular switches, the conversion between on and off states is regulated by self-oligomerization, or binding to several other identical molecules. The shape changes induced by binding or unbinding drive the complex into two different stable conformations. But , the auth ors found no experimental evidence for oligomerization of Tat; instead, both on and off forms appear to be monomers.

Other studies have shown that Tat is activated by the addition of an acetyl group--a functional group that is frequently added to (acetylation) or removed from (deacetylation) proteins to modify their properties--and that deacetylation inactivates Tat. Based on the known kinetics of both acetylation and deacetylation, the authors postulated that a resistor might exist in the Tat circuit. A simple mathematical model showed that the interconversion of the two forms, coupled with the known rate of breakdown of Tat, was sufficient to encode a resistor that explained Tat circuit shutoff and possibly the stability of HIV's latent state.

In the Tat resistor model, as in the cell, Tat deacetylation occurs at a much faster rate than acetylation. Deacetylated (inactive) Tat can take one of two paths--reconversion in to acetylated (active) Tat, or destruction of the protein by cellular machinery. When the appropriate conversion and destruction rates were fed into their model, activated Tat appeared briefly after a stray burst of transcription but quickly disappeared without breaking viral latency. This prediction of the model was then precisely replicated in cell culture experiments. An array of cell culture experiments perturbing the supposed Tat resistor was then performed. For example, inhibition of the deacetylating enzyme SirT1 induced Tat transcription activation in cells, further supporting the role of Tat acetylation in controlling viral dormancy. Finally, simulations under noisy conditions predicted that this simple resistor system was better able to resist environmental fluctuations than hypothetical oligomer-dependent switches, and cell-sorting experiments confirmed this prediction.

This simple switch, in which the deactivating reaction overpowers the activating rea ction under most circumstances, acts as a "feedback re sistor," and its general features, the authors suggest, are likely to be found in other systems that must rapidly alternate between two states while resisting noise in the environment. Their model may also provide an explanation for some puzzling observations about Tat and HIV. Tat contains at least two acetylation sites that must both be deacetylated to turn off transcription. The authors propose this requirement may avoid making the off state so easy to reach that the virus remains dormant all the time. This model also helps explain why some HIV patients experience short "blips" of viral activity, despite relatively low viral concentration. According to the authors, these pulses of viral activation may be due either to random increases of Tat activity or to environmental inhibitors of the SirT1 enzyme, such as dihydrocoumarin, a natural flavoring agent found in clover.
'"/>

Source:Public Library of Science


Related biology news :

1. Topical treatment shown to inhibit HIV and herpes simplex virus infection
2. Researchers trace evolution to relatively simple genetic changes
3. New technique multiplies life span in simple organisms
4. Jefferson biologist coaxing human embryonic stem cells to make dopamine with simpler, faster method
5. New evidence questions the simple link between prion proteins and madcow disease
6. Cheaper and simpler keyhole surgery
7. Microscopic scaffolding offers a simple solution to treating skin injuries
8. Scientists explore how complex organs develop from a simple bud
9. Scientists design simple dipstick test for cocaine, other drugs
10. The power of one: A simpler, cheaper method for cell fusion
11. Surgeons develop simpler way to cure atrial fibrillation

Post Your Comments:
*Name:
*Comment:
*Email:


(Date:2/5/2016)... 5, 2016 http://www.researchandmarkets.com/research/5kvw8m/global_facial ... "Global Facial Recognition Market 2016-2020" ... http://www.researchandmarkets.com/research/5kvw8m/global_facial ) has announced the addition of ... report to their offering. --> ... has announced the addition of the ...
(Date:2/3/2016)... -- --> --> ... Identification System Market by Component (Hardware and Software), Search ... Government, Healthcare, and Transportation) and Geography - Global Forecast ... to be worth USD 8.49 Billion by 2020 at ... The transformation and technology evolution from the manual process ...
(Date:2/2/2016)... YORK , Feb. 2, 2016 /PRNewswire/ ... facilities are primarily focused on medical screening ... measure point-of-care parameters. Wearable devices that facilitate ... user,s freedom of movement are being bolstered ... for human biomedical signal acquisition coupled with ...
Breaking Biology News(10 mins):
(Date:2/9/2016)... , Feb. 9, 2016 BERG, a ... biological research approach, has announced the appointment of ... and Chief Operating Officer. Haddock brings to BERG ... including 12 years in senior financial functions at ... in business organizational management. Niven ...
(Date:2/8/2016)... GUELPH, ON , Feb. 8, 2016 /PRNewswire/ - BIOREM ... nominated to the top ten finalists for clean technology companies ... are the top 10 companies listed on the TSX ... mining, oil & gas, clean technology & life ... formula with equal weighting given to return on investment, market ...
(Date:2/8/2016)... 2016  CytRx Corporation (NASDAQ: CYTR ), ... oncology, today announced that it has entered into ... Technology Growth Capital, Inc. and Hercules Technology III, ... --> --> ... financing under the loan and security agreement.  The ...
(Date:2/8/2016)... , Feb. 8, 2016 Novan, Inc. today announced ... of the Board of Directors of Novan. In addition, Robert ... North Carolina . --> ... also announced that it received a total of $32.8 million of ... from its private investor network originating throughout the Research Triangle area ...
Breaking Biology Technology: