Navigation Links
A new focus for the mechanism of nerve growth

Researchers at Yale shed new light on the mechanism of nerve cell growth by identifying novel functions for a molecular "motor" protein, myosin-II, according to an article in the March issue of Nature Cell Biology.

As nerve cells develop or attempt to recover after damage, they extend growth cones, highly flexible extensions that act as environmental sensors. Growth cones use the information they gather to direct advance of the nerve cells and it has long been known that such advance depends on the coordinated assembly of actin filament networks.

This study implicates the molecular motor, myosin II, as a key part of the process of recycling the actin networks and ultimately sensing and directing nerve growth.

Proteins in the Myosin family function as molecular motors; the most familiar myosins power contraction in heart and skeletal muscles. Myosin II motors are involved in functions such as directed cell movement, cell division and wound closure. While skeletal myosins have been studied in detail, non-muscle myosins are just beginning to be understood and this work identifies a new role for them.

The researchers, led by Paul Forscher, professor of molecular, cellular and developmental biology at Yale used a technique called fluorescent speckle microscopy, or FSM, that let them directly see actin filament assembly, disassembly and movement in living cells. They used FSM to monitor actin dynamics in nerve cells treated with a new drug called blebbistatin, that relaxes non-muscle myosin II and effectively blocks processes such as cell division.

"Past research has focused on how actin structures are assembled at the leading edges of motile cells," said Forscher. "Instead, this paper investigates turnover or recycling of the actin networks. As the complement to actin network assembly, recycling is necessary t o prevent actin buildup that could actually impede neuronal advance."

Forscher likened actin networks in the growth cone to a molecular treadmill that is constantly being assembled at the leading edge and moved rearward, powered by a myosin II motor located at its back end. But, the networks making up this actin treadmill are constantly being recycled at the back end, and actin molecules are freed to complete a "virtual belt" cycle and be used again.

"Surprisingly, growth cones of nerve cells rapidly doubled in width when myosin II was blocked by blebbistatin," said Forscher. "FSM see that this was caused by inefficient recycling of actin filaments at the back end of the actin network treadmill."

Recycling of actin bundles at the ends of structures called filopodia was most strongly affected. This is important because filopodia are thought to play a key sensory role in growth cone guidance -- suggesting actin filament recycling and signaling may be intimately related.

The team is now investigating the implications of these findings for control of nerve growth, with particular interest in repair of spinal cord nerves after injury.


'"/>

Source:Yale University


Related biology news :

1. Supercomputers to focus brains on AIDS dilemma
2. Study of energy and health in Africa focuses spotlight on charcoal and forest management
3. Scientists focus on dwarf eye
4. NIH renews network focused on how genes influence drug responses
5. WCS says avian flu prevention should focus on farms, markets
6. Brains response to visual stimuli helps us to focus on what we should see, rather than all there is to see
7. Report focuses on challenges to unlocking future promise of vaccines
8. First encyclopedia of nuclear receptors reveals organisms focus on sex, food
9. New light microscope sharpens scientists focus
10. Reversing hibernating heart muscle focus of UB researchers
11. Report focuses on the role good microbes play in future medicine
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:5/3/2016)... VILNIUS, Lithuania , May 3, 2016 /PRNewswire/ ... today released the MegaMatcher Automated Biometric Identification ... deployment of large-scale multi-biometric projects. MegaMatcher ABIS can ... and accuracy using any combination of fingerprint, face ... of MegaMatcher SDK and MegaMatcher ...
(Date:4/26/2016)... , April 27, 2016 ... the  "Global Multi-modal Biometrics Market 2016-2020"  report to ... ) , The analysts forecast the ... CAGR of 15.49% during the period 2016-2020.  ... number of sectors such as the healthcare, BFSI, ...
(Date:4/14/2016)... , April 14, 2016 ... and Malware Detection, today announced the appointment of ... the new role. Goldwerger,s leadership appointment comes ... the heels of the deployment of its platform at ... behavioral biometric technology, which discerns unique cognitive and physiological ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... , ... June 27, 2016 , ... ... for Amgen, will join the faculty of the University of North Carolina ... professor of strategy and entrepreneurship at UNC Kenan-Flagler, with a focus on the ...
(Date:6/24/2016)... ... ... While the majority of commercial spectrophotometers and fluorometers use the z-dimension of ... higher end machines that use the more unconventional z-dimension of 20mm. Z-dimension ... of the cuvette holder. , FireflySci has developed several Agilent flow cell product ...
(Date:6/23/2016)... TORONTO , June 23, 2016 /PRNewswire/ - ... Ontario biotechnology company, Propellon ... the development and commercialization of a portfolio of ... cancers. Epigenetic targets such as WDR5 represent an ... contribute significantly in precision medicine for cancer patients. ...
(Date:6/23/2016)... YORK , June, 23, 2016  The Biodesign ... to envision new ways to harness living systems and ... Modern Art (MoMA) in New York City ... than 130 participating students, showcased projects at MoMA,s Celeste ... Paola Antonelli , MoMA,s senior curator of architecture ...
Breaking Biology Technology: