Navigation Links
A large step forward in the fight against African sleeping sickness

Each year, over 300,000 people die of African sleeping sickness (trypanosomiasis). Researchers from the Flanders Interuniversity Institute for Biotechnology (VIB) connected to the Free University of Brussels are making strides in the battle against this disease.

They have coupled the human protein ApoL-1 with a nanobody in order to very specifically eliminate the infection caused by the pathogenic parasites, against which our defense mechanism is powerless. Tests on mice are already promising. The recently published research results offer new possibilities for people who have contracted this disease.>African sleeping sickness
About 400,000 people worldwide suffer from the deadly African sleeping sickness. The disease produces severe sleep disorders that ultimately end in coma, followed by death. At present, fewer than 10% of the patients are treated in time. But on the other hand, the current treatment is also very toxic, and in many cases also results in the patient's death.

African sleeping sickness is a disorder caused by the trypanosome parasite. The blood-sucking tsetse fly transmits the parasite from person to person. Once someone has been infected by the parasite, the person's body has great difficulty getting the infection under control, because the parasite constantly changes appearance. Thus, the trypanosome remains impervious to the antibodies that the body produces.

Parasite eludes human defense mechanism
Fortunately, our body has a special defense mechanism that can help us in the fight against African trypanosomes. Our blood contains ApoL-1, which is toxic to − and neutralizes − most types of trypanosomes.

However, there is one trypanosome against which we are not protected: Trypanosoma brucei rhodesiense. This parasite is resistant to ApoL-1, because it has particular proteins that counteract ApoL-1's action.

For some time now, scientists have known that a variant of ApoL-1 i s not neutralized by Trypanosoma brucei rhodesiense. This truncated ApoL-1 variant can help to overcome the parasite that infects our body, but only when it is present in very high concentrations. The challenge for the researchers was to get this truncated ApoL-1 variant efficiently to the place where it is needed: onto the surface of the parasite.

Nanobody carries ApoL-1 variant to the parasite
Under the direction of Serge Muyldermans and Patrick De Baetselier, VIB researchers have previously produced a nanobody (a very small antibody) that targets and binds to the parasite very specifically (Stijlemans et al., 2004). Toya Nath Baral and his VIB colleagues have now succeeded in coupling this nanobody to the abbreviated ApoL-1 variant. This creates a special product that binds immediately to the parasite and thus brings the ApoL-1 variant to the place where it can carry out its neutralizing action.

All the tests performed on mice have been very promising: Trypanosome-infected mice survive after 1 treatment. The parasite is removed from the blood and all effects associated with the disease disappear. There is every indication that this substance can also counteract Trypanosoma brucei rhodesiense in humans − sparing them from African sleeping sickness.


'"/>

Source:VIB, Flanders Interuniversity Institute of Biotechnology


Related biology news :

1. Scientists discover unique microbe in Californias largest lake
2. Worlds largest rainforest drying experiment completes first phase
3. NASA study finds snow melt causes large ocean plant blooms
4. New project aims to make large-scale lobster farms feasible
5. Butterfly migration could be largest known
6. Amazon symposium to address large-scale conservation
7. Inhaling large amounts of salt can cause hypertension
8. Size matters: Preventing large mammal extinction
9. Carnegie Mellon University research reveals how cells process large genes
10. Updated data on novel HPV vaccine confirms efficacy in large population
11. Free-energy theory borne out in large-scale protein folding
Post Your Comments:
*Name:
*Comment:
*Email:


(Date:12/22/2016)... -- SuperCom (NASDAQ:   SPCB ... Public Safety, HealthCare, and Finance sectors announced today that Leaders in ... implement and deploy a community-based supportive services program to reduce recidivism ... further expanding its presence in the state. ... This new program, which is expected to ...
(Date:12/19/2016)... y TORONTO , 19 de diciembre de 2016 ... Inc. que permitirá el desarrollo acelerado de MSC-1, un anticuerpo humanizado ... tipos de tumor en 2017, con múltiples sitios previstos a lo ... ... objetivo en el factor inhibidor de leucemia (LIF), una citoquina pleiotrópica ...
(Date:12/16/2016)... 2016 The global wearable medical device market, in terms ... from USD 5.31 billion in 2016, at a CAGR of 18.0% ... ... advancements in medical devices, launch of a growing number of smartphone-based ... among healthcare providers, and increasing focus on physical fitness. ...
Breaking Biology News(10 mins):
(Date:1/19/2017)... ... 2017 , ... November Research Group, LLC, a global leader ... manufacturers and regulators, is proud to announce the worldwide release of PRIMO Mail. ... provide product vigilance departments with the flexibility and ease of use of a ...
(Date:1/19/2017)... , ... January 18, 2017 , ... ... Institutes of Health (NIH) to update its Data Sharing Policy. Specifically, the nation’s ... of grant applications subject to the existing policy. AMIA recommended that NIH earmark ...
(Date:1/19/2017)... , Jan. 18, 2017 The global ... USD 92.9 billion by 2025, according to a ... industry has been adaptive of the function of ... as 2002. Among the services outsourced, clinical trial ... instance, Johnson & Johnson was the first pharmaceutical ...
(Date:1/18/2017)... ... January 18, 2017 , ... Opal Kelly, a ... or PCI Express, announced the ZEM5310 USB 3.0 FPGA Module, combining a SuperSpeed ... business-card sized form factor suitable for prototyping, testing, and production-ready integration. The ZEM5310 ...
Breaking Biology Technology: