Navigation Links
A bacterial genome reveals new targets to combat infectious disease

More than a billion people are at risk for infection with filarial nematodes, parasites that cause elephantiasis, African river blindness, and other debilitating diseases in more than 150 million people worldwide. The nematodes themselves play host to bacteria that live within their cells, but in this case, the relationship is classic mutualism, with each benefiting from the other. Indeed, the Wolbachia bacterium is so crucial to its host nematode that apparently eradicating it with antibiotics severely compromises the nematode's ability to complete its life cycle within its human host. Thus, understanding the details of this relationship may help identify new strategies for controlling diseases caused by filarial nematodes. In a new study published in the freely-available online journal PLoS Biology, Barton Slatko and colleagues present the complete DNA sequence of the Wolbachia pipientis strain within Brugia malayi, a parasitic nematode responsible for lymphatic filariasis.

This Wolbachia genome is small, only about a million base pairs, and many metabolically critical genes have degraded through mutation to the point of uselessness. This phenomenon, called reductive evolution, is typical of long-term symbioses, as the two partners increasingly complement one another's biochemical activities.

Slatko and colleagues enumerate a variety of pathways that have either been degraded or preserved, and highlight patterns in the genome structure through comparisons with other bacteria. For example, Wolbachia can manufacture some essential metabolic coenzymes, which do not appear to be made by its host. Conversely, it cannot synthesize amino acids and a variety of other vitamins and cofactors, and probably depends on the nematode to supply them.

One discovery of possible significance is the presence in the bacterium of the synthetic pathway for heme - the oxygen-carrying iron component of hemoglobin. The nematode may require heme for synthesis of devel opmental hormones, so Wolbachia's heme pathway may be an inviting target for therapy against nematode infection. Since no new antifilarial has been developed in two decades, these results may quickly lead to new therapeutic strategies against these parasites.


Citation: Foster J, Ganatra M, Kamal I, Ware J, Makarova K, et al. (2005) The Wolbachia genome of Brugia malayi: Endosymbiont evolution within a human pathogenic nematode. PLoS Biol 3(4): e121.


Source:PLoS Biology

Related biology news :

1. Anti-bacterial additive widespread in U.S. waterways
2. Discovery of key proteins shape could lead to improved bacterial pneumonia vaccine
3. Scientists discover that host cell lipids facilitate bacterial movement
4. Protein prevents detrimental immune effects of bacterial sepsis
5. Researchers develop new method for facile identification of proteins in bacterial cells
6. A virus-like hitchhiker may trigger bacterial meningitis
7. Using the genomic shortcut to predict bacterial behavior
8. Eliminating bacterial infections out of thin air
9. Student scientists create living bacterial photographs
10. Researchers identify molecular anchor that allows bacterial invasion of central nervous system
11. Scientists determine structure of enzyme that disrupts bacterial virulence
Post Your Comments:

(Date:11/9/2015)... SAN JOSE, Calif. , Nov. 9, 2015 /PRNewswire/ ... of human interface solutions, today announced broader entry into ... of vehicle-specific solutions that match the pace of consumer ... drivers, and biometric sensors are ideal for the automotive ... the vehicle. Europe , ...
(Date:10/29/2015)... 29, 2015   MedNet Solutions , an innovative ... of clinical research, is pleased to announce that it ... (MHTA) as one of only three finalists for a ... Small and Growing" category. The Tekne Awards honor ... superior technology innovation and leadership. iMedNet™ ...
(Date:10/29/2015)... ANN ARBOR, Mich. , Oct. 29, 2015 ... with Eurofins Genomics for U.S. distribution of its ... DNA-seq kit and Rubicon,s new ThruPLEX Plasma-seq ... DNA to enable the preparation of NGS libraries ... in plasma for diagnostic and prognostic applications in ...
Breaking Biology News(10 mins):
(Date:11/25/2015)... San Francisco, CA (PRWEB) , ... November 25, ... ... leading microbial genomics company uBiome, were featured on AngelList early in their initial ... by launching an AngelList syndicate for individuals looking to make early stage investments ...
(Date:11/24/2015)... 2015 Cepheid (NASDAQ: CPHD ) today ... following conference, and invited investors to participate via webcast. ...      Tuesday, December 1, 2015 at 11.00 a.m. Eastern Time ...      Tuesday, December 1, 2015 at 11.00 a.m. Eastern Time ... New York, NY      Tuesday, December 1, 2015 ...
(Date:11/24/2015)... ... November 24, 2015 , ... Copper is an essential ... bound to proteins, copper is also toxic to cells. With a $1.3 million ... (WPI) will conduct a systematic study of copper in the bacteria Pseudomonas aeruginosa ...
(Date:11/24/2015)... , Nov. 24, 2015  Clintrax Global, Inc., a worldwide ... Carolina , today announced that the company has set a ... a 391% quarter on quarter growth posted for Q3 of 2014 ... and Mexico , with the establishment of ... December 2015. --> United Kingdom and ...
Breaking Biology Technology: