Navigation Links
3 proteins may play important role in nerve-cell repair

Some mature brain cells can grow new extensions when the amount of three particular proteins on their surface increases, a new study shows.

The research examined three related receptor proteins, called GPR3, GPR6 and GPR12, on nerve cells in the brains of rats.

When researchers increased the amount of the three proteins, the cells grew extensions that were up to three times longer than those on nerve cells with normal levels of the proteins, and the extensions grew four to eight times faster than in control cells.

"Our findings suggest that these three proteins could be important targets for treating stroke, brain and spinal cord injuries and also neurodegenerative diseases," says principal investigator Yoshinaga Saeki of the Ohio State University Medical Center.

The study is published in the April 6 issue of the Journal of Biological Chemistry.

Increased amounts of the proteins were associated with a significant rise in the level of an important signaling molecule inside the nerve cells called cAMP. This molecule plays a key role in regulating nerve-cell growth, differentiation and survival, and the regeneration of long parts of the cell called axons that carry the nerve impulses.

Levels of cAMP drop in mammalian nerve cells as they mature, and this is thought to explain, in part, why mature nerve cells cannot regenerate damaged axons.

"Our findings provide additional evidence that cAMP plays an important role in axon growth and suggest that these receptors are likely to play a major role in regulating cAMP production in nerve cells," says Saeki, an associate professor of neurological surgery and chief of Ohio State's Dardinger Laboratory for Neuro-oncology and Neurosciences.

In this study, first author Shigeru Tanaka, a postdoctoral fellow in Saeki's laboratory, and his colleagues used nerve cells obtained from the brain tissue of rats and mouse neuroblastoma cells growing in cult ure to learn more about the three proteins and their involvement in cAMP regulation.

The researchers added additional copies of the three genes to the cells to increase the levels of the proteins, and then used a laboratory technique called RNA intereference to turn off production of the proteins.

Of the three molecules, GPR3 was the most abundant in the nerve cells, while GPR12 was the most potent at stimulating growth of the nerve extensions. The study showed that blocking GPR3 greatly slows the growth of the nerve extensions. The researchers reversed this effect by restoring either GPR3 or GPR12 in the cells.

High levels of the three proteins were also linked to higher levels of cAMP, with GPR6 and GPR12 increasing the level twofold to threefold.

"Taken together," Saeki says, "our findings indicate that these three proteins improve growth of neuronal extensions even in the presence of inhibitory molecules, and we are very keen to find out whether the approach can be translated in preclinical animal models of stroke or spinal cord injury."
'"/>

Source:Ohio State University


Related biology news :

1. New, automated tool successfully classifies and relates proteins in unprecedented way
2. UWs Rosetta software to unlock secrets of many human proteins
3. Global analysis of membrane proteins
4. UNC plant researchers discover proteins interact to form hair-trigger protection against invaders
5. Mad cow proteins successfully detected in blood
6. Researchers develop new method for facile identification of proteins in bacterial cells
7. Hopkins scientists uncover tags that force proteins to cell surface
8. Researchers create functioning artificial proteins using natures rules
9. UCSD discovery may provide novel method to generate medically useful proteins
10. Prostate cancer uses Wnt signaling proteins to promote growth of bone tumors
11. A real time look at interactions between RNA and proteins

Post Your Comments:
*Name:
*Comment:
*Email:


(Date:11/22/2016)... 22, 2016   MedNet Solutions , an innovative ... of clinical research, is pleased to announce that the ... and Life Sciences Awards as "Most Outstanding in ... unprecedented year of recognition and growth for MedNet, which ... years. iMedNet ™ , MedNet,s ...
(Date:11/16/2016)... Nov. 16, 2016 Sensory Inc ., ... security for consumer electronics, and VeriTran , ... retail industry, today announced a global partnership that ... to authenticate users of mobile banking and mobile ... software which requires no specialized biometric scanners, ...
(Date:6/27/2016)... , June 27, 2016 Research and ... North America 2016-2020" report to their offering. ... North America to grow at a CAGR of ... been prepared based on an in-depth market analysis with inputs from ... prospects over the coming years. The report also includes a discussion ...
Breaking Biology News(10 mins):
(Date:12/4/2016)... SAN DIEGO , Dec. 3, 2016  In ... Society of Hematology (ASH) Annual Meeting and Exposition in ... advanced biomedical engineering methods to improve the delivery of ... conditions. These new methods are designed to carry therapies ... are needed most, which could provide a substantial advantage ...
(Date:12/2/2016)... , Dec. 2, 2016  The Multiple Myeloma ... from the MMRF CoMMpass Study SM —the largest and ... precision medicine in multiple myeloma—will be presented at the ... Meeting & Exposition in San Diego ... to optimize treatment strategies, as well as identify pathways ...
(Date:12/2/2016)... ... December 01, 2016 , ... ACEA Biosciences, Inc. announced today that it will ... AC0010 at the World Conference on Lung Cancer 2016, taking place in Vienna, Austria ... I/II clinical trials for AC0010 in patients with advanced non-small cell lung cancer harboring ...
(Date:12/2/2016)... ... ... The Conference Forum has announced that the 3rd annual Immuno-Oncology 360° ... 1-3, 2017 at the Roosevelt Hotel in New York City. Led by advisors Dr ... approach, which addresses the most up-to-date information regarding business aspects, clinical advancements and scientific ...
Breaking Biology Technology: