Navigation Links
Zapping Titan-like atmosphere with UV rays creates life precursors

The first experimental evidence showing how atmospheric nitrogen can be incorporated into organic macromolecules is being reported by a University of Arizona team.

The finding indicates what organic molecules might be found on Titan, the moon of Saturn that scientists think is a model for the chemistry of pre-life Earth.

Earth and Titan are the only known planetary-sized bodies that have thick, predominantly nitrogen atmospheres, said Hiroshi Imanaka, who conducted the research while a member of UA's chemistry and biochemistry department.

How complex organic molecules become nitrogenated in settings like early Earth or Titan's atmosphere is a big mystery, Imanaka said.

"Titan is so interesting because its nitrogen-dominated atmosphere and organic chemistry might give us a clue to the origin of life on our Earth," said Imanaka, now an assistant research scientist in the UA's Lunar and Planetary Laboratory. "Nitrogen is an essential element of life."

However, not just any nitrogen will do. Nitrogen gas must be converted to a more chemically active form of nitrogen that can drive the reactions that form the basis of biological systems.

Imanaka and Mark Smith converted a nitrogen-methane gas mixture similar to Titan's atmosphere into a collection of nitrogen-containing organic molecules by irradiating the gas with high-energy UV rays. The laboratory set-up was designed to mimic how solar radiation affects Titan's atmosphere.

Most of the nitrogen moved directly into solid compounds, rather than gaseous ones, said Smith, a UA professor and head of chemistry and biochemistry. Previous models predicted the nitrogen would move from gaseous compounds to solid ones in a lengthier stepwise process.

Titan looks orange in color because a smog of organic molecules envelops the planet. The particles in the smog will eventually settle down to the surface and may be exposed to conditions that could create life, said Imanaka, who is also a principal investigator at the SETI Institute in Mountain View, Calif.

However, scientists don't know whether Titan's smog particles contain nitrogen. If some of the particles are the same nitrogen-containing organic molecules the UA team created in the laboratory, conditions conducive to life are more likely, Smith said.

Laboratory observations such as these indicate what the next space missions should look for and what instruments should be developed to help in the search, Smith said.

Imanaka and Smith's paper, "Formation of nitrogenated organic aerosols in the Titan upper atmosphere," is scheduled for publication in the Early Online edition of the Proceedings of the National Academy of Sciences the week of June 28. NASA provided funding for the research.

The UA researchers wanted to simulate conditions in Titan's thin upper atmosphere because results from the Cassini Mission indicated "extreme UV" radiation hitting the atmosphere created complex organic molecules.

Therefore, Imanaka and Smith used the Advanced Light Source at Lawrence Berkeley National Laboratory's synchroton in Berkeley, Calif. to shoot high-energy UV light into a stainless steel cylinder containing nitrogen-and-methane gas held at very low pressure.

The researchers used a mass spectrometer to analyze the chemicals that resulted from the radiation.

Simple though it sounds, setting up the experimental equipment is complicated. The UV light itself must pass through a series of vacuum chambers on its way into the gas chamber.

Many researchers want to use the Advanced Light Source, so competition for time on the instrument is fierce. Imanaka and Smith were allocated one or two time slots per year, each of which was for eight hours a day for only five to 10 days.

For each time slot, Imanaka and Smith had to pack all the experimental equipment into a van, drive to Berkeley, set up the delicate equipment and launch into an intense series of experiments. They sometimes worked more than 48 hours straight to get the maximum out of their time on the Advanced Light Source. Completing all the necessary experiments took years.

It was nerve-racking, Imanaka said: "If we miss just one screw, it messes up our beam time."

At the beginning, he only analyzed the gases from the cylinder. But he didn't detect any nitrogen-containing organic compounds.

Imanaka and Smith thought there was something wrong in the experimental set-up, so they tweaked the system. But still no nitrogen.

"It was quite a mystery," said Imanaka, the paper's first author. "Where did the nitrogen go?"

Finally, the two researchers collected the bits of brown gunk that gathered on the cylinder wall and analyzed it with what Imanaka called "the most sophisticated mass spectrometer technique."

Imanaka said, "Then I finally found the nitrogen!"

Imanaka and Smith suspect that such compounds are formed in Titan's upper atmosphere and eventually fall to Titan's surface. Once on the surface, they contribute to an environment that is conducive to the evolution of life.


Contact: mnjensen
University of Arizona

Related biology news :

1. Scientists in first global study of poison gas in the atmosphere
2. Researchers find origin of breathable atmosphere half a billion years ago
3. Springer founds new journal Air Quality, Atmosphere and Health
4. Nanominerals influence Earth systems from ocean to atmosphere to biosphere
5. NASA launches airborne study of arctic atmosphere, air pollution
6. Key molecule discovered in Venuss atmosphere
7. Atmosphere threatened by pollutants entering ocean, prof says
8. CO2 increase in the atmosphere augments tolerance of barley to salinity
9. Potent greenhouse gas more prevalent in atmosphere than previously assumed
10. Cleaning the atmosphere of carbon: African forests out of balance
11. The Atmosphere Research Group evaluates dynamic atmosphere in Mediterranean
Post Your Comments:
Related Image:
Zapping Titan-like atmosphere with UV rays creates life precursors
(Date:11/17/2015)... SOUTH EASTON, Mass. , Nov. 17, 2015 /PRNewswire/ ... "Company"), a leader in the development and sale of ... to the worldwide life sciences industry, today announced it ... closing of its $5 million Private Placement (the "Offering"), ... Offering to $4,025,000.  One or more additional closings are ...
(Date:11/12/2015)... Nov. 12, 2015  A golden retriever that stayed ... dystrophy (DMD) has provided a new lead for treating ... the Broad Institute of MIT and Harvard and the ... . Cell, pinpoints a protective ... the disease,s effects. The Boston Children,s lab of ...
(Date:11/12/2015)... Nov. 11, 2015   Growing need for ... tools has been paving the way for use ... of discrete analytes in clinical, agricultural, environmental, food ... predominantly used in medical applications, however, their adoption ... due to continuous emphasis on improving product quality ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... SUNNYVALE, Calif. , Nov. 24, 2015 ... executives will be speaking at the following conference, and ... New York, NY      Tuesday, December 1, ... New York, NY      Tuesday, December 1, ...      Piper Jaffray Healthcare Conference, New York, NY ...
(Date:11/24/2015)... ... November 24, 2015 , ... International Society for ... of the premier annual events for pharmaceutical manufacturing: 2015 Annual Meeting. The conference ... ISPE hosted the largest number of attendees in more than a decade. ...
(Date:11/24/2015)... ... ... This fall, global software solutions leader SAP and AdVenture Capital brought together dozens ... BIG ideas to improve health and wellness in their schools. , Now, the top ... of SAP's Teen Innovator, an all-expenses paid trip to Super Bowl 50, and an ...
(Date:11/24/2015)... Technologies Ltd. (OTCQB: TIKRF) today announced that its Annual General Meeting of ... Israel time, at the law offices of Goldfarb ... Floor, Tel Aviv, Israel . ... Tamir to the Board of Directors; , election of ... of an amendment to certain terms of options granted to our Chief ...
Breaking Biology Technology: