Navigation Links
Yale scientists discover new method for engineering human tissue regeneration
Date:5/12/2011

If pending clinical trials prove successful, a new discovery published in The FASEB Journal (http://www.fasebj.org) could represent a major scientific leap toward human tissue regeneration and engineering. In a research report appearing online, Yale scientists provide evidence to support a major paradigm shift in this specialty area from the idea that cells added to a graft before implantation are the building blocks of tissue, to a new belief that engineered tissue constructs can actually induce or augment the body's own reparative mechanisms, including complex tissue regeneration.

"With the constant growing clinical demand for alternative vessels used for vascular reconstructive surgeries, a significant development for alternative grafts is currently the primary focus of many investigators worldwide," said Christopher K. Breuer, M.D., a researcher involved in the work from Yale University School of Medicine/Yale-New Haven Hospital in New Haven, CT. "We believe that through an understanding of human vascular biology, coupled with technologies such as tissue engineering, we can introduce biological grafts that mimic the functional properties of native vessels and that are capable of growing with the patients." Breuer also says that patients are currently being enrolled in a first-of-its-kind clinical trial at Yale University to evaluate the safety and growth potential of tissue-engineered vascular grafts in children undergoing surgery for congenital heart disease.

To make this discovery, Breuer and colleagues conducted a three-part study, starting with two groups of mice. The first group expressed a gene that made all of its cells fluorescent green and the second group was normal. Researchers extracted bone marrow cells from the "green" mice, added them to previously designed scaffolds, and implanted the grafts into the normal mice. The seeded bone marrow cells improved the performance of the graft; however, a rapid loss of green cells was noted and the cells that developed in the new vessel wall were not green, suggesting that the seeded cells promoted vessel development, but did not turn into vessel wall cells themselves. These findings led to the second part of the study, which tested whether cells produced in the host's bone marrow might be a source for new cells. Scientists replaced the bone marrow cells of a female mouse with those of a male mouse before implanting the graft into female mice. The researchers found that the cells forming the new vessel were female, meaning they did not come from the male bone marrow cells. In the final experiment, researchers implanted a segment of male vessel attached to the scaffold into a female host. After analysis, the researchers found that the side of the graft next to the male segment developed with male vessel wall cells while the side of the graft attached to the female host's vessel formed from female cells, proving that the cells in the new vessel must have migrated from the adjacent normal vessel.

"There's a very good chance that this study will eventually have a major impact on many disorders that afflict humankind," said Gerald Weissmann, M.D., Editor-in-Chief of The FASEB Journal. "These scientists have basically used the body's repair mechanisms to make new tissues through bioengineering. In years to come, starfish and salamanders will have nothing on us!"


'/>"/>

Contact: cmooneyhan@faseb.org
cmooneyhan@faseb.org
301-634-7104
Federation of American Societies for Experimental Biology
Source:Eurekalert

Related biology news :

1. NRELs multi-junction solar cells teach scientists how to turn plants into powerhouses
2. UGA scientists discover missing links in the biology of cloud formation over the oceans
3. Scientists discover animal-like urea cycle in tiny diatoms in the ocean
4. Smithsonian scientists report changes in vegetation determine how animals migrate
5. Johns Hopkins scientists reveal nerve cells navigation system
6. BC scientists link to European Consortium studying human genome
7. Antibodies help protect monkeys from HIV-like virus, NIH scientists show
8. More than 20 percent of atheist scientists are spiritual
9. Scientists sequence genomes of 2 major threats to American food and fuel
10. Hitting target in cancer fight now easier with new nanoparticle platform, UCLA scientists say
11. UCSF scientists honored by National Academy of Sciences
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/24/2016)... Ampronix facilitates superior patient care by providing unparalleled technology to leaders of the medical ... premium product recently added to the range of products distributed by Ampronix. ... ... ... Ampronix News ...
(Date:5/3/2016)... , May 3, 2016  Neurotechnology, a ... the MegaMatcher Automated Biometric Identification System (ABIS) ... large-scale multi-biometric projects. MegaMatcher ABIS can process multiple ... using any combination of fingerprint, face or iris ... MegaMatcher SDK and MegaMatcher Accelerator , ...
(Date:4/19/2016)... , UAE, April 20, 2016 ... be implemented as a compact web-based "all-in-one" system solution ... the biometric fingerprint reader or the door interface with ... of modern access control systems. The minimal dimensions of ... ID readers into the building installations offer considerable freedom ...
Breaking Biology News(10 mins):
(Date:6/24/2016)... ... ... While the majority of commercial spectrophotometers and fluorometers use the z-dimension of ... higher end machines that use the more unconventional z-dimension of 20mm. Z-dimension ... of the cuvette holder. , FireflySci has developed several Agilent flow cell product ...
(Date:6/23/2016)... June 23, 2016 /PRNewswire/ - FACIT has announced ... biotechnology company, Propellon Therapeutics Inc. ("Propellon" ... commercialization of a portfolio of first-in-class WDR5 inhibitors ... such as WDR5 represent an exciting class of ... precision medicine for cancer patients. Substantial advances have ...
(Date:6/23/2016)... 2016  The Biodesign Challenge (BDC), a university competition ... harness living systems and biotechnology, announced its winning teams ... New York City . The ... projects at MoMA,s Celeste Bartos Theater during the daylong ... senior curator of architecture and design, and Suzanne ...
(Date:6/23/2016)... , June 23, 2016 Apellis Pharmaceuticals, ... 1 clinical trials of its complement C3 inhibitor, ... and multiple ascending dose studies designed to assess ... of subcutaneous injection in healthy adult volunteers. ... either as a single dose (ranging from 45 ...
Breaking Biology Technology: