Navigation Links
Yale researchers develop a way to monitor engineered blood vessels as they grow in patients
Date:11/30/2011

Bethesda, MDUsing magnetic resonance imaging (MRI) and nanoparticle technology, researchers from Yale have devised a way to monitor the growth of laboratory-engineered blood vessels after they have been implanted in patients. This advance represents an important step toward ensuring that blood vessels, and possibly other tissues engineered from a patient's own biological material, are taking hold and working as expected. Until now, there has been no way to monitor the growth and progress of engineered tissues once they were implanted. This research was published in the December 2011 issue of the FASEB Journal (http://www.fasebj.org).

"We hope that the important findings from our study will serve as a valuable tool for physicians and scientists working to better understand the biological mechanisms involved in tissue engineering," said Christopher K. Breuer, M.D., co-author of the study from the Interdepartmental Program in Vascular Biology and Therapeutics at Yale University School of Medicine in New Haven, CT. "Resulting advances will hopefully usher in a new era of personalized medical treatments where replacement vessels are specifically designed for each patient suffering from cardiac anomalies and disease."

To make this advance, scientists used two different groups of cells to make tissue-engineered blood vessels. In the first group, the cells were labeled with the MRI contrast agent. In the second group, the cells were normal and did not have an MRI label. Cells from each group were then used to create separate laboratory-engineered blood vessels, which were implanted into mice. The purpose was to see whether the laboratory-engineered blood vessels made from cells that were labeled with the contrast agent would indeed be visible on MRI and to make sure that the addition of the contrast agent did not negatively affect the cells or the function of the laboratory-engineered vessels. Researchers imaged the mice with MRI and found that it was possible to track the cells labeled with contrast agent, but not possible to track the cells that were not labeled. This suggests that using MRI and cellular contrast agents to study cellular changes in the tissue-engineered blood vessels after they are implanted is an effective way to monitor these types of vessels.

"This is great news for patients with congenital heart defects, who have to undergo tissue grafting, but that's only the tip of the scalpel," said Gerald Weissmann, M.D., Editor-in-Chief of the FASEB Journal. "As we progress toward an era of personalized medicinewhere patients' own tissues and cells will be re-engineered into replacement organs and treatmentswe will need noninvasive ways to monitor what happens inside the body in real time. This technique fulfills another promise of nanobiology."


'/>"/>

Contact: Cody Mooneyhan
cmooneyhan@faseb.org
301-634-7104
Federation of American Societies for Experimental Biology
Source:Eurekalert

Related biology news :

1. NJIT researchers publish news of success with robots as learning tool
2. Researchers new recipe cooks up better tissue phantoms
3. BUSM researchers develop blood test to detect membranous nephropathy
4. WSU researchers use a 3-D printer to make bone-like material
5. Abstinence-only education does not lead to abstinent behavior, UGA researchers find
6. Body rebuilding: Researchers regenerate muscle in mice
7. UCLA researchers engineer blood stem cells to fight melanoma
8. BWH researchers develop a vaccine prototype stronger than traditional vaccines
9. The immune system has protective memory cells, researchers discover
10. Researchers awarded $3.2 million from NIH to pioneer advanced biomolecule discovery technology
11. 3 researchers in the Amazon clear up doubts as to the benefits of ecotourism
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/9/2016)... 2016 Paris Police Prefecture ... security solution to ensure the safety of people and operations ... the major tournament Teleste, an international technology group ... announced today that its video security solution will be utilised ... up public safety across the country. The system roll-out is ...
(Date:6/3/2016)... , June 3, 2016 ... Management) von Nepal ... und Lieferung hochsicherer geprägter Kennzeichen, einschließlich Personalisierung, ... führend in der Produktion und Implementierung von ... der Ausschreibung im Januar teilgenommen, aber Decatur ...
(Date:6/2/2016)... , June 2, 2016   The Weather Company , ... Watson Ads, an industry-first capability in which consumers will be ... able to ask questions via voice or text and receive ... Marketers have long sought an advertising ... that can be personal, relevant and valuable; and can scale ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... ... June 23, 2016 , ... STACS DNA Inc., the sample tracking software company, ... Crime Laboratory, has joined STACS DNA as a Field Application Specialist. , “I ... President and COO of STACS DNA. “In further expanding our capacity as a scientific ...
(Date:6/23/2016)... , June 23, 2016 ... Hematology Review, 2016;12(1):22-8 http://doi.org/10.17925/OHR.2016.12.01.22 ... , the peer-reviewed journal from touchONCOLOGY, Andrew ... escalating cost of cancer care is placing an ... result of expensive biologic therapies. With the patents ...
(Date:6/23/2016)... Connecticut (PRWEB) , ... June 23, 2016 , ... ... introduce a new line of intelligent tools designed, tuned and optimized exclusively for ... September 12–17 in Chicago. The result of a collaboration among several companies with ...
(Date:6/22/2016)... 22, 2016 Research and Markets has announced ... report to their offering. ... from $29.3 billion in 2013. The market is expected to grow ... 2015 to 2020, increasing from $50.6 billion in 2015 to $96.6 ... during the forecast period (2015 to 2020) are discussed. As well, ...
Breaking Biology Technology: