Navigation Links
Yale receives $8.4 million to study DNA repair in cancer cells
Date:10/25/2007

New Haven, Conn.Yale School of Medicine researchers have received $8.4 million to study how cancer cells mend their own chromosomes and DNA after damage caused by radiation and chemotherapy.

The study funded by the National Institutes of Health (NIH) is the next step in developing targeted cancer therapies, said the lead researcher, Peter Glazer, M.D., chair of therapeutic radiology and leader of the radiobiology research program at Yale Cancer Center.

We have put together a program to target protein and DNA repair enzymes that fix the DNA, Glazer said. We feel this could create an Achilles heel for cancer cells that would make them more vulnerable to traditional cancer therapies.

Cancer therapies such as radiation and chemotherapy work by damaging the cancer cells DNA, which carries the information, or blueprint, for cell replication.

Glazer said the four NIH funded Yale studies combine basic and translational research and may lead to new therapies for use with conventional radiation and chemotherapy.

It is our hope to be able to offer novel therapies derived from this research to our patients at the Yale Cancer Center, he said. The overall program represents a significant commitment of the Yale School of Medicine and the participating investigators to studies that have direct relevance to cancer biology and therapy.

In one research project, Alan Sartorelli, professor of pharmacology, will develop new cancer prodrugs that become activated in the low-oxygen conditions in which tumor cells can thrive. Once activated, the drug sets in motion the destruction of a resistance protein that repairs certain DNA lesions.

Glazer will lead a study of the cancer DNA repair genes, RAD51 and BRCA1, in cancer cells. His goal is to devise strategies to render cancer cells vulnerable to therapies that target interconnected repair pathways. RAD51 creates a protein that performs DNA repair and BRCA1 is a tumor suppressor associated with breast cancer.

Joann Sweasy, professor of therapeutic radiology, will study how DNA repair occurs in the normal human population and in tumors. She will examine how deficiencies in DNA repair can be used to guide the design of new cancer therapies.

Patrick Sung, professor of therapeutic radiology and of molecular biophysics and biochemistry, will focus on the repair genes BRCA2, FANCD2, and RAD51, and how their repair pathways are regulated at the level of protein-protein interactions.


'/>"/>

Contact: Jacqueline Weaver
jacqueline.weaver@yale.edu
203-432-8555
Yale University
Source:Eurekalert

Related biology news :

1. DuPonts first biologically derived polymer receives global recognition
2. OneWorld Health drug receives Orphan designation from U.S. and European regulatory agencies
3. Research on antibiotics receives historical recognition
4. Anthrax test, developed by army and CDC, receives FDA approval
5. Research team receives $7.5 million to study cassava
6. A comprehensive response to HIV could prevent 10 million AIDS deaths in Africa by 2020
7. UCLA launches $20 million stem cell institute to investigate HIV, cancer and neurological disorders
8. Six million Africans face famine because of locusts, drought
9. Retrovirus struck ancestors of chimpanzees and gorillas millions of years ago, but did not affect ancestral humans
10. Evidence of 600-million-year old fungi-algae symbiosis discovered in marine fossils
11. $5.1 billion would save 6 million children
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/5/2017)... Allen Institute for Cell Science today announces the launch ... dynamic digital window into the human cell. The website ... deep learning to create predictive models of cell organization, ... suite of powerful tools. The Allen Cell Explorer will ... resources created and shared by the Allen Institute for ...
(Date:4/4/2017)...   EyeLock LLC , a leader of iris-based ... Patent and Trademark Office (USPTO) has issued U.S. Patent ... an iris image with a face image acquired in ... 45 th issued patent. "The ... the multi-modal biometric capabilities that have recently come to ...
(Date:3/30/2017)... HONG KONG , March 30, 2017 ... developed a system for three-dimensional (3D) fingerprint identification by adopting ground ... technology into a new realm of speed and accuracy for use ... applications at an affordable cost. ... ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... ... October 12, 2017 , ... ... of a complex biological network, a depiction of a system of linkages and ... Dmitry Korkin, PhD, associate professor of computer science at Worcester Polytechnic Institute (WPI) ...
(Date:10/12/2017)... , ... October 12, 2017 , ... ... Vilnius, Lithuania, announced today that they have entered into a multiyear collaboration to ... provide CRISPR researchers with additional tools for gene editing across all applications. , ...
(Date:10/12/2017)... ... October 12, 2017 , ... ... with the addition of its newest module, US Hemostats & Sealants. , SmartTRAK’s ... hemostats, absorbable hemostats, fibrin sealants, synthetic sealants and biologic sealants used in surgical ...
(Date:10/12/2017)... ... October 12, 2017 , ... ... analysis platform specifically designed for life science researchers to analyze and interpret ... Rosalind Franklin, who made a major contribution to the discovery of the ...
Breaking Biology Technology: