Navigation Links
Yale engineers track bacteria's kayak paddle-like motion for first time
Date:9/25/2009

New Haven, Conn.Yale engineers have for the first time observed and tracked E. coli bacteria moving in a liquid medium with a motion similar to that of a kayak paddle.

Their findings, which appear online September 29 in the journal Physical Review Letters, will help lead to a better understanding of how bacteria move from place to place and, potentially, how to keep them from spreading.

Scientists have long theorized that the cigar-shaped cell bodies of E. coli and other microorganisms would follow periodic orbits that resemble the motion of a kayak paddle as they drift downstream in a current. Until now, no one had managed to directly observe or track those movements.

Hur Koser, associate professor at Yale's School of Engineering & Applied Science, previously discovered that hydrodynamic interactions between the bacteria and the current align the bacteria in a way that allows them to swim upstream. "They find the most efficient route to migrate upstream, and we ultimately want to understand the mechanism that allows them to do that," Koser said.

In the new study, Koser, along with postdoctoral associate and lead author of the paper, Tolga Kaya, devised a method to see this motion in progress. They used advanced computer and imaging technology, along with sophisticated new algorithms, that allowed them to take millions of high-resolution images of tens of thousands of individual, non-flagellated E. coli drifting in a water and glycerin solution, which amplified the bacteria's paddle-like movements.

The team characterized the bacteria's motion as a function of both their length and distance from the surface. The team found that the longer and closer to the surface they were, the slower the E. coli "paddled."

It took the engineers months to perfect the intricate camera and computer system that allowed them to take 60 to 100 sequential images per second, then automatically and efficiently analyze the huge amount of resulting data.

E. coli and other bacteria can colonize wherever there is water and sufficient nutrients, including the human digestive tract. They encounter currents in many settings, from riverbeds to home plumbing to irrigation systems for large-scale agriculture.

"Understanding the physics of bacterial movement could potentially lead to breakthroughs in the prevention of bacterial migration and sickness," Koser said. "This might be possible through mechanical means that make it more difficult for bacteria to swim upstream and contaminate water supplies, without resorting to antibiotics or other chemicals."


'/>"/>

Contact: Suzanne Taylor Muzzin
suzanne.taylormuzzin@yale.edu
203-432-8555
Yale University
Source:Eurekalert  

Related biology news :

1. Environmentally green beer: Munich brewing engineers research energy savings
2. Boston University biomedical engineers teach bacteria to count
3. Civil engineers name NJITs John Schuring Educator of Year
4. Civil engineers name NJITs John Schuring Educator of Year Award
5. Vanderbilt engineers play key role in new DOE energy frontier research center
6. New method developed by UC San Diego bioengineers gives regenerative medicine a boost
7. Case Western Reserve University engineers hit pay dirt with clay mixture
8. Engineers develop method to disperse chemically modified graphene in organic solvents
9. LabRoots Launches Social Networking Site for Scientists & Engineers
10. Ben-Gurion University engineers develop technique to help combat nuclear proliferation
11. Iowa student engineers develop hand-held water sanitizer for a thirsty world
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Yale engineers track bacteria's kayak paddle-like motion for first time
(Date:3/24/2017)... -- The Controller General of Immigration from Maldives Mr. ... have received the prestigious international IAIR Award for the most innovative high ... ... Maldives Immigration Controller ... (small picture on the right) have received the IAIR award for the ...
(Date:3/24/2017)... Research and Markets has announced the addition of the ... Forecast to 2025" report to their offering. ... The Global Biometric Vehicle Access System ... over the next decade to reach approximately $1,580 million by 2025. ... forecasts for all the given segments on global as well as ...
(Date:3/23/2017)... , March 23, 2017 The report "Gesture Recognition and ... Industry, and Geography - Global Forecast to 2022", published by MarketsandMarkets, the market ... CAGR of 29.63% between 2017 and 2022. Continue ... ... ...
Breaking Biology News(10 mins):
(Date:3/24/2017)... and ROCKVILLE, Md. , March ... of Maxwell Biotech Venture Fund (MBVF), today announced positive ... added to the standard drug therapy regimen in patients ... small molecule drug discovered by scientists at Sequella, Inc. ... Institutes of Health. A total of ...
(Date:3/24/2017)... 2017 Agenus Inc. (NASDAQ: AGEN), an immuno-oncology ... cancer vaccines, today announced participation at the following conferences: ... Blair and Maidstone Life Sciences conference "Cancer Immunotherapy Conference" ... New York, NY . Agenus will participate ... 9:40 am: Robert B. Stein , M.D., Ph.D., ...
(Date:3/23/2017)... 23, 2017  SeraCare Life Sciences, Inc., a ... vitro diagnostics manufacturers and clinical laboratories, is ... multiplexed Inherited Cancer reference material ... next-generation sequencing (NGS). The Seraseqâ„¢ Inherited Cancer DNA ... from industry experts to validate the ability ...
(Date:3/23/2017)... YORK , March 23, 2017 ... ... of death, putting significant strain on health care systems, in ... cancer diagnoses rises, so too does the development of innovative ... minimum side effects. Among the many types of cancer treatments, ...
Breaking Biology Technology: