Navigation Links
X-ray laser helps slay parasite that causes sleeping sickness
Date:12/5/2012

An international team of scientists, using the world's most powerful X-ray laser, has revealed the three dimensional structure of a key enzyme that enables the single-celled parasite that causes African trypanosomiasis (or sleeping sickness) in humans.

With the elucidation of the 3D structure of the cathepsin B enzyme, it will be possible to design new drugs to inhibit the parasite (Trypanosoma brucei) that causes sleeping sickness, leaving the infected human unharmed.

The research team, including several ASU scientists, is led by the German Electron Synchrotron (DESY) scientist Henry Chapman from the Center of Free-Electron Laser Science (CFEL), professor Christian Betzel from the University of Hamburg and Lars Redecke from the SIAS joint Junior Research Group at the Universities of Hamburg and Lbeck. They report their findings this week in Science.

"This is the first new biological structure solved with a free-electron laser," said Chapman of the development.

"These images of an enzyme, which is a drug target for sleeping sickness, are the first results from our new 'diffract-then-destroy' snapshot X-ray laser method to show new biological structures which have not been seen before," explained John Spence, ASU Regents' Professor of Physics. "The work was led by the DESY group and used the Linac Coherent Light Source at the U.S. Department of Energy's SLAC National Accelerator Laboratory."

Transferred to its mammalian host by the bite of the tsetse fly, the effects of the parasite are almost always fatal if treatment is not received. The sleeping sickness parasite threatens more than 60 million people in sub-Saharan Africa and annually kills an estimated 30,000 people. Current drug treatments are not well tolerated, cause serious side effects and the parasites are becoming increasingly drug resistant.

"This paper is so exciting as it is based on nanocrystals grown by the groups at DESY in Hamburg and at the University of Lbeck inside living insect cells," said Petra Fromme, a professor in ASU's Department of Chemistry and Biochemistry. "This is the first novel structure determined by the new method of femtosecond crystallography. The structure may be of great importance for the development of new drugs to fight sleeping sickness, as it shows novel features of the structure of the CatB protein, a protease that is essential for the pathogenesis, including the structure of natural inhibitor peptide bound in the catalytic cleft of the enzyme."

An additional difficulty includes the fact that the cathepsin B enzyme is also found in humans and all mammals. However the discovery of the enzyme's 3D structure has enabled the researchers to pinpoint distinctive structural differences between the human and the parasite's form of the enzyme. Subsequent drug targets can selectively block the parasite's enzyme, leaving the patient's intact.


'/>"/>

Contact: Jenny Green
jenny.green@asu.edu
480-965-1430
Arizona State University
Source:Eurekalert  

Related biology news :

1. Study provides recipe for supercharging atoms with X-ray laser
2. X-rays reveal the self-defence mechanisms of bacteria
3. Low-cost carbon capture gets X-rayed
4. Speed and power of X-ray laser helps unlock molecular mysteries
5. Stanford-SLAC team uses X-ray imaging to observe running batteries in action
6. Dental X-rays linked to common brain tumor
7. CMU and CTC to develop robotic laser system to strip paint from aircraft
8. Laser-powered needle promises pain-free injections
9. The laser beam as a 3-D painter
10. University of Tennessee Space Institute researchers develop laser technology to fight cancer
11. LAMIS -- a green chemistry alternative for laser spectroscopy
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
X-ray laser helps slay parasite that causes sleeping sickness
(Date:12/8/2016)... Dec. 8, 2016  Singulex, Inc., the leader in ... entered into a license and supply agreement with Thermo ... agreement provides Singulex access to Thermo Scientific BRAHMS PCT ... is used to diagnose systemic bacterial infection and ... to aid in assessing the risk of critically ...
(Date:12/7/2016)... , December 7, 2016 BioCatch , the ... of its patent portfolio, which grew to over 40 granted and pending ... , , ... filed patent entitled " System, Device, and Method Estimating Force ... enables device makers to forego costly hardware components needed to estimate the ...
(Date:12/7/2016)... , Dec. 7, 2016   Veridium ... announced the appointment of new CEO James ... executive with decades of experience, has served in ... Cisco, where he specialized in expanding a pipeline ... technology portfolios. He most recently served as managing ...
Breaking Biology News(10 mins):
(Date:1/17/2017)... Jan. 17, 2017 The Global Implantable ... CAGR of around 7.5% over the next decade ... of the prominent trends that the market is ... diseases & graft transplant surgeries and medical implants ... market is categorized into immunomodulatory biomaterials, natural, polymers, ...
(Date:1/17/2017)... --  Pulmatrix, Inc . (NASDAQ: PULM ), ... to address serious pulmonary diseases, today announced that its ... of CF patients, PUR1900, has been designated as a ... & Drug Administration. Under the QIDP ... of novel drugs against important pathogens, Pulmatrix will receive ...
(Date:1/17/2017)... N.Y. , Jan. 17, 2017  Northwell ... speed the advance of precision cancer research. ... largest health care provider, Northwell Health ... year. Indivumed, GmbH is a Germany ... anti-cancer medical therapies. Together they will greatly expand ...
(Date:1/17/2017)... Shanghai and Hong Kong (PRWEB) , ... January ... ... innovation lifecycle management software, and NetDimensions, a global provider of learning and performance ... reseller agreement for the mainland China market. , “In the life sciences industry, ...
Breaking Biology Technology: