Navigation Links
X chromosomes: Undoing a hairpin doubles gene activity

Male fruit flies have one X chromosome per cell, females have two. So genes on the male X must work twice as hard to produce the same amount of protein as its female counterparts. A team of researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich has found a new switch involved in making this possible.

In the fruit fly Drosophila -- as in humans -- the sexes have different sets of chromosomes. While females have two X chromosomes in their somatic cells, males have one X and one copy of the much smaller Y. The latter determines maleness but carries very few genes, while the X chromosome has thousands of genes. Many of these encode essential proteins that must be made in equal amounts in both sexes, and males that fail to meet this requirement are inviable.

The males make up for the difference in X chromosome copy number by ensuring that each gene on their X chromosome is expressed at twice the rate of its equivalent on a female X, a phenomenon known as dosage compensation. The so-called Dosage Compensation Complex (DCC) is responsible for distinguishing the X chromosome from the others in males and doubling the level of activity of most of the genes it contains. The DCC is a complicated molecular machine which, in addition to so-called MSL proteins, contains two long RNA molecules (referred to as roX RNAs). "Correct incorporation of roX RNAs is known to be essential for DCC function, but how this is accomplished has been unclear," says LMU biologist Professor Peter Becker, who studies how the operation of the DCC is regulated.

Switching to the binding mode

Members of his team have now discovered that a change in the structural conformation of the roX RNAs is a prerequisite for the functional activation of DCC. These RNAs all contain a characteristic hairpin structure, which is conserved in various fly species. "We have long supposed that such a widely conserved structure must be of functional significance, but we were unable to demonstrate a specific binding interaction between the hairpin and the MSL protein components of the DCC", Becker explains.

The reason for this is revealed in the new study. It turns out that the hairpin structure actually prevents protein binding. The hairpin must first be unwound by a specific enzyme before the MSL proteins can bind to the RNAs and a functional DCC is formed. The closed hairpin conformation is equivalent to a switch fixed in the OFF position. Unwinding of the hairpin flips the switch to ON, thus permitting assembly of the active DCC. "We believe that this switch is only activated under conditions that are found at certain sites on the X chromosome. This would ensure that dosage compensation is restricted to genes on the X", says Becker.

The researchers now assume that long RNAs play a much more active role in other regulatory complexes than has been suspected hitherto. Up to now, these RNAs have been seen as passive scaffolds for the binding of proteins. "We think though that they modulate the activity of the proteins they associate with. And we have now shown this for the DCC", Becker says. He will continue to work in this field. "Now it's getting really exciting," he says.


Contact: Luise Dirscherl
Ludwig-Maximilians-Universitt Mnchen

Related biology news :

1. Hairpin turn: Micro-RNA plays role in wood formation
2. Protein structure: Immune system foiled by a hairpin
3. New process doubles production of alternative fuel while slashing costs
4. Heart study suggests city center pollution doubles risk of calcium build-up in arteries
5. Schools should provide opportunities for 60 minutes of daily physical activity to all students
6. Schools should provide students with daily physical activity, IOM recommends
7. PARP inhibitor shows activity in pancreatic, prostate cancers among patients carrying BRCA mutations
8. PTSD research: Distinct gene activity patterns from childhood abuse
9. Biological activity alters the ability of sea spray to seed clouds
10. Recreational use of HIV antiretroviral drug linked to its psychoactivity
11. Brain Activity Mapping Project aims to understand the brain
Post Your Comments:
(Date:5/12/2016)... 12, 2016 , a brand ... overview results from the Q1 wave of its quarterly ... was consumers, receptivity to a program where they would ... health insurance company. "We were surprised to ... Michael LaColla , CEO of Troubadour Research, "primarily ...
(Date:4/28/2016)... India , April 28, 2016 ... Infosys (NYSE: INFY ), and Samsung SDS, a ... that will provide end customers with a more secure, ... services.      (Logo: ) , ... services, but it also plays a fundamental part in enabling ...
(Date:4/26/2016)... Research and Markets has announced ... 2016-2020"  report to their offering.  , ,     (Logo: ... analysts forecast the global multimodal biometrics market to ... period 2016-2020.  Multimodal biometrics is being ... the healthcare, BFSI, transportation, automotive, and government for ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... /PRNewswire/ - FACIT has announced the creation of ... company, Propellon Therapeutics Inc. ("Propellon" or "the Company"), ... portfolio of first-in-class WDR5 inhibitors for the treatment ... represent an exciting class of therapies, possessing the ... cancer patients. Substantial advances have been achieved with ...
(Date:6/23/2016)... 2016  The Biodesign Challenge (BDC), a university competition ... harness living systems and biotechnology, announced its winning teams ... New York City . The ... projects at MoMA,s Celeste Bartos Theater during the daylong ... senior curator of architecture and design, and Suzanne ...
(Date:6/23/2016)... Ky. , June 23, 2016 ... two Phase 1 clinical trials of its complement ... placebo-controlled, single and multiple ascending dose studies designed ... pharmacodynamics (PD) of subcutaneous injection in healthy adult ... subcutaneously (SC) either as a single dose (ranging ...
(Date:6/23/2016)... ... June 23, 2016 , ... Regulatory Compliance Associates® Inc. (RCA), ... free webinar on Performing Quality Investigations: Getting to Root Cause. ... no charge. , Incomplete investigations are still a major concern to the Regulatory ...
Breaking Biology Technology: