Navigation Links
X chromosome exposed
Date:5/29/2008

Researchers from the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, and the EMBL-European Bioinformatics Institute (EMBL-EBI) in Hinxton, UK, have revealed new insights into how sex chromosomes are regulated. A chromatin modifying enzyme helps compensate for the fact that males have only one copy of the sex chromosome X, while females have two. The enzyme distinguishes between male and female sex chromosomes in fruit flies and binds to different locations on the male and female X chromosome, the scientists report in the current issue of the journal Cell. The evolutionarily conserved enzyme is also found in humans.

In species ranging from insects to humans, sex chromosomes, the famous X and Y, are responsible for determining gender. Females have two copies of the X chromosome while males have one X and one Y. This could mean that females produce twice as many proteins from the genes carried on the X chromosome as males. However, fruit flies compensate for the sex chromosome difference by doubling the activity of genes on the X chromosome in males a vital process called dosage compensation. Biologists already know that a molecular machine called the MSL complex achieves dosage compensation in flies, but it remains unclear how exactly it accomplishes its function.

Now researchers from the lab of Asifa Akhtar at EMBL and the groups of Nick Luscombe and Paul Bertone at EMBL-EBI have uncovered how one component of the MSL complex, an enzyme called MOF, ensures that the activity of only male X chromosome genes get ratcheted up. MOF relaxes the structure of chromatin tightly packaged DNA, to allow the transcription machinery to access genes on the DNA.

We were very surprised to find MOF bound not only to the X chromosome in males, but also to all the other chromosomes in the nucleus. This suggests the enzyme as a universal regulator of transcription that has evolved to play a specific role in dosage compensation, says Akhtar.

A closer look revealed that MOF binds differently to chromosomes from males and females. On autosomes, chromosomes that are not involved in determining sex, and the X chromosome in females, MOF binds mostly to the beginning of a gene where transcription starts. On the X chromosome in males, however, MOF binds also towards the end of the gene. Most likely MOF opens up the DNA towards the end of the genes and ensures that transcription is completed successfully.

One can imagine the transcriptional machinery moving along the DNA like a train on a railway track. When the tracks are blocked the train could derail, resulting in incomplete transcription, explains Juanma Vaquerizas of Luscombes lab, who contributed to the analysis of Akhtars data. It appears that MOF clears the tracks throughout the male X chromosome, while on a female X obstructions are more likely to occur.

More complete transcription results in more proteins produced from the single X chromosome in males than from either of the two X chromosomes in females, thereby balancing out their excess. MOF is the first enzyme in the MSL complex to behave differently according to whether the target gene is located on the sex chromosome versus other chromosomes in males.

MOF is conserved across species and also has a human homolog. Since the mechanism of dosage compensation is radically different in mammals, it will be very interesting to discover what functional role this enzyme might play in that context, says Bertone.


'/>"/>

Contact: Anna-Lynn Wegener
wegener@embl.de
49-622-138-7452
European Molecular Biology Laboratory
Source:Eurekalert

Related biology news :

1. Cold Spring Harbor Protocols features classic approaches for analyzing chromosomes
2. Fungi can tell us about the origin of sex chromosomes
3. Workman Lab characterizes novel regulator of chromosome function
4. Bioclocks work by controlling chromosome coiling
5. X-effect: female chromosome confirmed a prime driver of speciation
6. Grant supports study of abnormal ring-shaped chromosomes
7. Penguins exposed to DDT from melting glaciers
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/5/2017)... SEATTLE , April 5, 2017  The Allen ... the Allen Cell Explorer: a one-of-a-kind portal and dynamic ... large-scale 3D imaging data, the first application of deep ... edited human stem cell lines and a growing suite ... the platform for these and future publicly available resources ...
(Date:3/30/2017)... ANGELES , March 30, 2017  On April ... Hack the Genome hackathon at Microsoft,s ... exciting two-day competition will focus on developing health and ... Hack the Genome is the ... been tremendous. The world,s largest companies in the genomics, ...
(Date:3/27/2017)... CENTRE, N.Y. , March 27, 2017 /PRNewswire-USNewswire/ ... Healthcare Information and Management Systems Society (HIMSS) Analytics ... Outpatient EMR Adoption Model sm . In addition, ... 12% of U.S. hospitals using an electronic medical ... CHS for its high level of EMR usage ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... BOSTON (PRWEB) , ... October 12, 2017 , ... ... name for two-dimensional representations of a complex biological network, a depiction of a ... a big mess,” said Dmitry Korkin, PhD, associate professor of computer science at ...
(Date:10/12/2017)... ... October 12, 2017 , ... ... of a United States multicenter, prospective clinical study that demonstrates the accuracy ... test capable of identifying clinically significant acute bacterial and viral respiratory tract ...
(Date:10/12/2017)... CA (PRWEB) , ... October ... ... (https://www.onramp.bio/ ) has launched Rosalind™, the first-ever genomics analysis platform specifically designed ... bioinformatics complexity. Named in honor of pioneering researcher Rosalind Franklin, who made ...
(Date:10/11/2017)... ... ... is a basic first aid supply for any work environment, but most personal eye wash ... if a dangerous substance enters both eyes? It’s one less decision, and likely quicker response ... piece. , “Whether its dirt and debris, or an acid or alkali, getting anything in ...
Breaking Biology Technology: