Navigation Links
Wyss Institute receives up to $37 million from DARPA to integrate organ chips to mimic the human body

The Wyss Institute for Biologically Inspired Engineering at Harvard University today announced that it has entered into a Cooperative Agreement worth up to $37 million with the Defense Advanced Research Projects Agency (DARPA) to develop an automated instrument that integrates 10 human organs-on-chips to study complex human physiology outside the body. This effort builds on the Institute's past breakthroughs in which Institute researchers engineered microchips that recapitulate the microarchitecture and functions of living organs, such as the lung, heart, and intestine. Each individual organ-on-chip is composed of a clear flexible polymer containing hollow microfluidic channels lined by living human cells about the size of a computer memory stick. Because the microdevices are translucent, they provide a window into the inner-workings of human organs without having to invade a living body.

With this new DARPA funding, Institute researchers and a multidisciplinary team of collaborators seek to build 10 different human organs-on-chips, to link them together to more closely mimic whole body physiology, and to engineer an automated instrument that will control fluid flow and cell viability while permitting real-time analysis of complex biochemical functions. As an accurate alternative to traditional animal testing models that often fail to predict human responses, this instrumented "human-on-a-chip" will be used to rapidly assess responses to new drug candidates, providing critical information on their safety and efficacy.

Several U.S. agencies are working together to help safeguard Americans from deliberate chemical, biological, radiological, and nuclear threats, as well as from emerging infectious diseases, by drastically accelerating the drug development process. As an example, DARPA, the National Institutes of Health (NIH), and the U.S. Food and Drug Administration (FDA) are actively collaborating to develop cutting edge technologies to predict drug safety. The Wyss project was selected under the DARPA Defense Sciences Office (DSO) Microphysiological Systems Program and will be administered through a Cooperative Agreement by the Army Research Office (ARO) and DARPA.

This unique platform could help ensure that safe and effective therapeutics are identified sooner, and ineffective or toxic ones are rejected early in the development process. As a result, the quality and quantity of new drugs moving successfully through the pipeline and into the clinic may be increased, regulatory decision-making could be better informed, and patient outcomes could be improved.

Jesse Goodman, FDA Chief Scientist and Deputy Commissioner for Science and Public Health, commented that the automated human-on-chip instrument being developed "has the potential to be a better model for determining human adverse responses. FDA looks forward to working with the Wyss Institute in its development of this model that may ultimately be used in therapeutic development."

Wyss Founding Director, Donald Ingber, M.D., Ph.D., and Wyss Core Faculty member, Kevin Kit Parker, Ph.D., will co-lead this five-year project. Ingber is also the Judah Folkman Professor of Vascular Biology at Harvard Medical School and the Vascular Biology Program at Boston Children's Hospital, and Professor of Bioengineering at Harvard's School of Engineering and Applied Sciences (SEAS). Parker is the Tarr Family Professor of Bioengineering and Applied Physics at SEAS. The organ-on-chip program will also draw on the Institute's leading scientists and engineers, including Geraldine Hamilton, Ph.D., Anthony Bahinski, Ph.D., and Daniel Levner, Ph.D., who have extensive industrial experience in drug development, safety pharmacology, and systems engineering, to accelerate translation of this technology from the lab into the marketplace where it can best help the people who need it most. Other key collaborators participating in the project include John Wikswo, Ph.D., University Professor of Physics at Vanderbilt University, and Andrzej Przekwas, Ph.D., from CFD Research Corporation.

Contact: Twig Mowatt
Wyss Institute for Biologically Inspired Engineering at Harvard

Related biology news :

1. University of Tennessee Space Institute researchers develop laser technology to fight cancer
2. Harvards Wyss Institute to develop smart suit that improves soldiers physical endurance
3. La Jolla institute identifies critical cell in fighting E. coli infection
4. Scripps Research Institute wins $77 million to develop AIDS vaccine center
5. Scripps Research Institute Scientists Develop Alternative to Gene Therapy
6. La Jolla Institute scientist discovers key step in immune system-fueled inflammation
7. GW announces creation of Computational Biology Institute to conduct integrated research
8. Scripps Research Institute announces five-year research collaboration with Bristol-Myers Squibb
9. Weizmann Institute solar technology to convert greenhouse gas into fuel
10. Esther B. OKeeffe Foundation gives $2 million to the Scripps Research Institute
11. La Jolla Institute discovery could lead to new way to screen drugs for adverse reactions
Post Your Comments:
Related Image:
Wyss Institute receives up to $37 million from DARPA to integrate organ chips to mimic the human body
(Date:6/15/2016)... 15, 2016 Transparency Market ... Recognition Market by Application Market - Global Industry Analysis Size ... to the report, the  global gesture recognition market ... and is estimated to grow at a CAGR ... 2024.  Increasing application of gesture recognition ...
(Date:6/3/2016)... 3, 2016 Das ... Nepal hat ein 44 ... geprägter Kennzeichen, einschließlich Personalisierung, Registrierung und IT-Infrastruktur, ... Produktion und Implementierung von Identitätsmanagementlösungen. Zahlreiche renommierte ... Januar teilgenommen, aber Decatur wurde als konformste ...
(Date:6/1/2016)... , June 1, 2016 ... in Election Administration and Criminal Identification to Boost Global ... a recently released TechSci Research report, " Global Biometrics ... Region, Competition Forecast and Opportunities, 2011 - 2021", the ... billion by 2021, on account of growing security concerns ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... ... June 27, 2016 , ... Parallel 6 , the leading software as ... Clinical Reach Virtual Patient Encounter CONSULT module which enables both audio and video ... trial team. , Using the CONSULT module, patients and physicians can schedule a face ...
(Date:6/27/2016)... , June 27, 2016  Liquid Biotech ... the funding of a Sponsored Research Agreement with ... tumor cells (CTCs) from cancer patients.  The funding ... CTC levels correlate with clinical outcomes in cancer ... data will then be employed to support the ...
(Date:6/24/2016)... SAN DIEGO , June 24, 2016 /PRNewswire/ ... that more sensitively detects cancers susceptible to PARP ... individual circulating tumor cells (CTCs). The new test ... of HRD-targeted therapeutics in multiple cancer types. ... therapies targeting DNA damage response pathways, including PARP, ...
(Date:6/23/2016)... ... June 23, 2016 , ... Mosio, a leader ... “Clinical Trials Patient Recruitment and Retention Tips.” Partnering with experienced clinical research professionals, ... providing practical tips, tools, and strategies for clinical researchers. , “The landscape of ...
Breaking Biology Technology: