Navigation Links
Would a molecular horse trot, pace or glide across a surface?
Date:9/13/2010

RIVERSIDE, Calif. Molecular machines can be found everywhere in nature, for example, transporting proteins through cells and aiding metabolism. To develop artificial molecular machines, scientists need to understand the rules that govern mechanics at the molecular or nanometer scale (a nanometer is a billionth of a meter).

To address this challenge, a research team at the University of California, Riverside studied a class of molecular machines that 'walk' across a flat metal surface. They considered both bipedal machines that walk on two 'legs' and quadrupedal ones that walk on four.

"We made a horse-like structure with four 'hooves' to study how molecular machinery can organize the motion of multiple parts," said Ludwig Bartels, a professor of chemistry, whose lab led the research. "A couple of years ago, we discovered how we can transport carbon dioxide molecules along a straight line across a surface using a molecular machine with two 'feet' that moved one step at a time. For the new research, we wanted to create a species that can carry more cargo which means it would need more legs. But if a species has more than two legs, how will it organize their motion?"

Bartels and colleagues performed experiments in the lab and found that the quadrupedal molecules use a pacing gait both legs on one side of the molecule move together, followed next by the two legs on the opposite side of the molecule. The species they created moved reliably along a line, not rotating to the side or veering off course. The researchers also simulated a trotting of the species, in which diagonally opposite hooves move together, and found that this form of movement distorted the species far too much to be viable.

Having established how the molecule moves, the researchers next addressed a fundamental question about molecular machinery: Does a molecule or portions of it simply tunnel through barriers presented by the roughness it encounters along its path?

"If it did, this would be a fundamental departure from mechanics in the macroscopic world and would greatly speed up movement," Bartels said. "It would be like driving on a bumpy road with the wheels of your car going through the bumps rather than over them. Quantum-mechanics is known to allow such behavior for very light particles like electrons and hydrogen atoms, but would it also be relevant for big molecules?"

Bartels and colleagues varied the temperature in their experiments to provide the molecular machines with different levels of energy, and studied how the speed of the machines varied as a consequence. They found that a machine with two legs can use tunneling to zip through the surface corrugation. But a machine with four (or potentially more) legs is not able to employ tunneling; while such a machine can coordinate the movement of its hooves in pacing, it cannot coordinate their tunneling, the researchers found.

"Thus, even at the tiniest scale, if you want to transport cargo fast, you need a light and nimble bipedal vehicle," Bartels said. "Larger vehicles may be able to carry more cargo, but because they cannot use tunneling effectively, they end up having to move slowly. Is this discouraging? Not really, because molecular machinery as a concept is still in its infancy. Indeed, there is an advantage to having a molecule move slowly because it allows us to observe its movements more closely and learn how to control them."

Study results appeared online last week in the Journal of the American Chemical Society, and will appear in print in an upcoming issue of the journal.

Next, the researchers plan to develop molecular machines whose motion can be controlled by light.

Currently, molecular machines are being studied intensely for their functions in biology and for their therapeutic value. For example, patients with GERD (Gastroesophageal reflux disease) are prescribed proton pump inhibitors, which slow the pumping action of biological molecular machines, thus reducing stomach acid levels.

"Generally, scientists' picture of the working of such biological molecular machinery completely disregards tunneling," Bartels said. "Our study corrects this perception, which may, in turn, lead to novel ways of controlling or correcting the behavior of biological molecular machines."

Artificial molecular machines are of interest to the microelectronic industry in its quest for smaller and smaller active elements in computers and for data storage. Artificial molecular machines potentially can also operate inside cells like their biological counterparts, greatly benefiting medicine.

Bartels's lab used the following molecules in the study: anthraquinone and pentaquinone (both bipedal); and pentacenetetrone and dimethyl pentacenetetrone (both quadrupedal).


'/>"/>

Contact: Iqbal Pittalwala
iqbal@ucr.edu
951-827-6050
University of California - Riverside
Source:Eurekalert  

Related biology news :

1. New method successfully predicted how oil from Deepwater Horizon spill would spread
2. Commercial road would disrupt worlds greatest migration
3. Would you put a tree in your gas tank?
4. Proposed mission would return sample from asteroid time capsule
5. Bacteria wouldnt opt for a swine flu shot
6. American Society for Biochemistry and Molecular Biology reacts to stem-cell ruling
7. Jefferson receives $3 million NIH grant to study molecular and genetic mechanisms in platelets
8. Genome comparison of ants establishes new model species for molecular research
9. University of Maryland receives $1.9M from NSF for investigations of biomolecular structure
10. Swimming upstream: Molecular approaches to better understand male infertility
11. New molecular signaling cascade increases glucose uptake
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Would a molecular horse trot, pace or glide across a surface?
(Date:4/11/2017)... BROOKLYN, N.Y. , April 11, 2017 /PRNewswire-USNewswire/ ... identical fingerprints, but researchers at the New York ... University College of Engineering have found that partial ... fingerprint-based security systems used in mobile phones and ... previously thought. The vulnerability lies in ...
(Date:4/5/2017)... KEY FINDINGS The global market for stem ... 25.76% during the forecast period of 2017-2025. The rise ... growth of the stem cell market. Download ... The global stem cell market is segmented on the ... cell market of the product is segmented into adult ...
(Date:3/30/2017)... , March 30, 2017 Trends, opportunities and ... and behavioral), by technology (fingerprint, AFIS, iris recognition, facial ... and others), by end use industry (government and law ... financial and banking, and others), and by region ( ... , Asia Pacific , and the ...
Breaking Biology News(10 mins):
(Date:5/16/2017)... ... May 16, 2017 , ... ... new ProxiMeta™ Hi-C metagenomic deconvolution service. ProxiMeta enables researchers to obtain complete, ... extraction—speeding research insights at lower cost. , “We’re very excited about the ...
(Date:5/16/2017)... ... (PRWEB) May 16, 2017 , ... ... (CAOS), long-standing development partners Invibio Biomaterial Solutions, UK, and China’s Double Medical ... help expand knowledge of the implantation of Double Medical’s Direct Lateral Interbody ...
(Date:5/15/2017)... ... May 15, 2017 , ... Algenist is continuing to disrupt ... gravity-shattering cream with a patented formula, clinically proven to deliver visible firming results ... Contouring Cream to our already innovative ELEVATE product line,” said vice president of ...
(Date:5/12/2017)... , May 12, 2017  Eli Lilly and ... that galcanezumab, an investigational treatment for the prevention ... endpoint in three Phase 3 studies (EVOLVE-1, EVOLVE-2 ... number of monthly migraine headache days compared to ... "The robust results from these three studies bring ...
Breaking Biology Technology: