Navigation Links
Would a molecular horse trot, pace or glide across a surface?
Date:9/13/2010

RIVERSIDE, Calif. Molecular machines can be found everywhere in nature, for example, transporting proteins through cells and aiding metabolism. To develop artificial molecular machines, scientists need to understand the rules that govern mechanics at the molecular or nanometer scale (a nanometer is a billionth of a meter).

To address this challenge, a research team at the University of California, Riverside studied a class of molecular machines that 'walk' across a flat metal surface. They considered both bipedal machines that walk on two 'legs' and quadrupedal ones that walk on four.

"We made a horse-like structure with four 'hooves' to study how molecular machinery can organize the motion of multiple parts," said Ludwig Bartels, a professor of chemistry, whose lab led the research. "A couple of years ago, we discovered how we can transport carbon dioxide molecules along a straight line across a surface using a molecular machine with two 'feet' that moved one step at a time. For the new research, we wanted to create a species that can carry more cargo which means it would need more legs. But if a species has more than two legs, how will it organize their motion?"

Bartels and colleagues performed experiments in the lab and found that the quadrupedal molecules use a pacing gait both legs on one side of the molecule move together, followed next by the two legs on the opposite side of the molecule. The species they created moved reliably along a line, not rotating to the side or veering off course. The researchers also simulated a trotting of the species, in which diagonally opposite hooves move together, and found that this form of movement distorted the species far too much to be viable.

Having established how the molecule moves, the researchers next addressed a fundamental question about molecular machinery: Does a molecule or portions of it simply tunnel through barriers presented by the roughness it encounters along its path?

"If it did, this would be a fundamental departure from mechanics in the macroscopic world and would greatly speed up movement," Bartels said. "It would be like driving on a bumpy road with the wheels of your car going through the bumps rather than over them. Quantum-mechanics is known to allow such behavior for very light particles like electrons and hydrogen atoms, but would it also be relevant for big molecules?"

Bartels and colleagues varied the temperature in their experiments to provide the molecular machines with different levels of energy, and studied how the speed of the machines varied as a consequence. They found that a machine with two legs can use tunneling to zip through the surface corrugation. But a machine with four (or potentially more) legs is not able to employ tunneling; while such a machine can coordinate the movement of its hooves in pacing, it cannot coordinate their tunneling, the researchers found.

"Thus, even at the tiniest scale, if you want to transport cargo fast, you need a light and nimble bipedal vehicle," Bartels said. "Larger vehicles may be able to carry more cargo, but because they cannot use tunneling effectively, they end up having to move slowly. Is this discouraging? Not really, because molecular machinery as a concept is still in its infancy. Indeed, there is an advantage to having a molecule move slowly because it allows us to observe its movements more closely and learn how to control them."

Study results appeared online last week in the Journal of the American Chemical Society, and will appear in print in an upcoming issue of the journal.

Next, the researchers plan to develop molecular machines whose motion can be controlled by light.

Currently, molecular machines are being studied intensely for their functions in biology and for their therapeutic value. For example, patients with GERD (Gastroesophageal reflux disease) are prescribed proton pump inhibitors, which slow the pumping action of biological molecular machines, thus reducing stomach acid levels.

"Generally, scientists' picture of the working of such biological molecular machinery completely disregards tunneling," Bartels said. "Our study corrects this perception, which may, in turn, lead to novel ways of controlling or correcting the behavior of biological molecular machines."

Artificial molecular machines are of interest to the microelectronic industry in its quest for smaller and smaller active elements in computers and for data storage. Artificial molecular machines potentially can also operate inside cells like their biological counterparts, greatly benefiting medicine.

Bartels's lab used the following molecules in the study: anthraquinone and pentaquinone (both bipedal); and pentacenetetrone and dimethyl pentacenetetrone (both quadrupedal).


'/>"/>

Contact: Iqbal Pittalwala
iqbal@ucr.edu
951-827-6050
University of California - Riverside
Source:Eurekalert  

Related biology news :

1. New method successfully predicted how oil from Deepwater Horizon spill would spread
2. Commercial road would disrupt worlds greatest migration
3. Would you put a tree in your gas tank?
4. Proposed mission would return sample from asteroid time capsule
5. Bacteria wouldnt opt for a swine flu shot
6. American Society for Biochemistry and Molecular Biology reacts to stem-cell ruling
7. Jefferson receives $3 million NIH grant to study molecular and genetic mechanisms in platelets
8. Genome comparison of ants establishes new model species for molecular research
9. University of Maryland receives $1.9M from NSF for investigations of biomolecular structure
10. Swimming upstream: Molecular approaches to better understand male infertility
11. New molecular signaling cascade increases glucose uptake
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Would a molecular horse trot, pace or glide across a surface?
(Date:4/26/2016)... April 27, 2016 Research ... Multi-modal Biometrics Market 2016-2020"  report to their offering.  ... The analysts forecast the global multimodal ... 15.49% during the period 2016-2020.  Multimodal ... sectors such as the healthcare, BFSI, transportation, automotive, ...
(Date:4/13/2016)... 13, 2016  IMPOWER physicians supporting Medicaid patients in ... new clinical standard in telehealth thanks to a new ... higi platform, IMPOWER patients can routinely track key health ... mass index, and, when they opt in, share them ... to a local retail location at no cost. By ...
(Date:3/22/2016)... 2016 According to ... for Consumer Industry by Type (Image, Motion, Pressure, ... & IT, Entertainment, Home Appliances, & Wearable ... 2022", published by MarketsandMarkets, the market for ... USD 26.76 Billion by 2022, at a ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... June 23, 2016 /PRNewswire/ - FACIT has announced ... biotechnology company, Propellon Therapeutics Inc. ("Propellon" ... commercialization of a portfolio of first-in-class WDR5 inhibitors ... such as WDR5 represent an exciting class of ... precision medicine for cancer patients. Substantial advances have ...
(Date:6/23/2016)... -- The Prostate Cancer Foundation (PCF) is pleased to announce 24 new ... prostate cancer. Members of the Class of 2016 were selected from a pool ... Read More About the Class of 2016 PCF Young Investigators ... ... ...
(Date:6/23/2016)... , ... June 23, 2016 , ... STACS DNA Inc., ... Leader at the Arkansas State Crime Laboratory, has joined STACS DNA as a Field ... DNA team,” said Jocelyn Tremblay, President and COO of STACS DNA. “In further expanding ...
(Date:6/23/2016)... LONDON , June 23, 2016 ... & Hematology Review, 2016;12(1):22-8 http://doi.org/10.17925/OHR.2016.12.01.22 ... Review , the peer-reviewed journal from touchONCOLOGY, ... the escalating cost of cancer care is placing ... a result of expensive biologic therapies. With the ...
Breaking Biology Technology: