Navigation Links
Worth a thousand words: Hopkins researchers paint picture of cancer-promoting culprit
Date:1/4/2008

They say that a picture can be worth a thousand words. This especially is true for describing the structures of molecules that function to promote cancer. Researchers at Johns Hopkins have built a three-dimensional picture of an enzyme often mutated in many types of cancers. The results, published Dec. 14 in Science, suggest how the most common mutations in this enzyme might lead to cancer progression.

Now that we have a better picture of the protein and how it is altered in cancer, we can envision development of mutation-specific inhibitors for cancer therapy, says Victor Velculescu, M.D., Ph.D., associate professor at the Johns Hopkins Kimmel Cancer Center.

The enzyme known as PIK3CA is mutated frequently in many cancers, including colon, brain, stomach, breast and lung. Moreover, most of the reported mutations occur in a few so-called hotspots in the protein. All known mutations make PIK3CA more active than normal, which causes cells to divide more frequently or faster than normal to give rise to cancer.

We tried to guess how the enzymes activity was affected by the mutations based on their locations along the length of the protein, says L. Mario Amzel, Ph.D., professor and director of biophysics and biophysical chemistry at Hopkins. But without a 3-D structure, its hard to do. Its like having a puzzle but missing critical pieces.

The research team isolated purified PIK3CA and part of another protein it normally binds to, grew crystals of the purified enzyme bound to its partner and figured out its 3-D structure using techniques that shoot X-rays through the protein crystals. Using computers, they analyzed the X-ray pattern and assembled a 3-D model of the enzyme. Onto this model the researchers then mapped all the cancer-associated mutations.

According to Sandra Gabelli, Ph.D., an instructor of biophysics and biophysical chemistry at Hopkins, the researchers originally suspected that the mutations somehow interfered with the way PIK3CA interacted with other proteins and parts of the cell and therefore must be on the outside surface of the enzyme. However, their results show that nearly all the mutations map to regions within the enzyme. Somehow, these internal mutations must cause the protein to subtly change how it works and interacts with itself, says Amzel. Its an interesting problem to solve, trying to figure out what slight shape and structural changes can make an enzyme work better-usually were trying to figure out why things stop working.

The team currently is unraveling the structure of mutated PIK3CA so that they can compare mutated to unmutated to better understand how the mutations lead to cancer. Another goal is to find drugs that can specifically interfere with PIK3CA and turn it down, to develop cancer-fighting therapies.


'/>"/>

Contact: Audrey Huang
audrey@jhmi.edu
410-614-5105
Johns Hopkins Medical Institutions
Source:Eurekalert

Related biology news :

1. Thousands of starving children could be restored to health with peanut butter program
2. How mother of thousands makes plantlets
3. Vaginal reconstruction not needed for most inter-sex females, Hopkins study shows
4. Researchers identify proteins involved in new neurodegenerative syndrome
5. Texas researchers and educators head for Antarctica
6. MGH researchers describe new way to identify, evolve novel enzymes
7. University of Pennsylvania researchers develop formula to gauge risk of disease clusters
8. U of MN researchers discover noninvasive diagnostic tool for brain diseases
9. U of Minnesota researchers discover noninvasive diagnostic tool for brain diseases
10. Researchers discover new strategies for antibiotic resistance
11. Researchers find new taste in fruit flies: carbonated water
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/19/2017)... The global military biometrics market ... by the presence of several large global players. The ... major players - 3M Cogent, NEC Corporation, M2SYS Technology, ... 61% of the global military biometric market in 2016. ... military biometrics market boast global presence, which has catapulted ...
(Date:4/17/2017)... NXT-ID, Inc. (NASDAQ: NXTD ) ("NXT-ID" ... its 2016 Annual Report on Form 10-K on Thursday April 13, ... ... the Investor Relations section of the Company,s website at http://www.nxt-id.com ... http://www.sec.gov . 2016 Year Highlights: ...
(Date:4/13/2017)... April 13, 2017 According to a new market ... Identity Analytics, Identity Administration, and Authorization), Service, Authentication Type, Deployment Mode, Vertical, ... Market is expected to grow from USD 14.30 Billion in 2017 to ... of 17.3%. ... MarketsandMarkets Logo ...
Breaking Biology News(10 mins):
(Date:8/16/2017)... ... 16, 2017 , ... Today, 3Bar Biologics Inc ., ... in funding from an impressive group of investors, including Rev1 Ventures, Maumee Ventures, ... this investment, 3Bar is broadening availability of its groundbreaking offering that uses naturally ...
(Date:8/15/2017)... Calif. , Aug. 15, 2017 After spending the ... and support with crowdsourced data collection, GeneFo now offers this platform ... in aligning and amplifying support, adherence, and data collection vis a ... medical foundations mark the successful launch of this offer. ... GeneFo ...
(Date:8/15/2017)... Boston, MA (PRWEB) , ... August 15, 2017 , ... ... unmet need that has compromised these disciplines for more than half a century. ... cannot be counted. It is widely known that molecular tags developed for this ...
(Date:8/15/2017)... , ... August 15, 2017 , ... ... shopping cart. Now mobile responsive, the new website makes it easy to navigate ... in between. Users can now find detailed product information, educational industry content and ...
Breaking Biology Technology: