Navigation Links
Wisconsin researchers describe how digits grow
Date:3/11/2008

MADISON - Researchers at the University of Wisconsin School of Medicine and Public Health (SMPH) are wagging a finger at currently held notions about the way digits are formed.

Studying the embryonic chick foot, the developmental biologists have come up with a model that explains how digits grow and why each digit is different from the others.

As reported in the Proceedings of the National Academy of Sciences Online Early Edition the week of March 10-14, 2008, the scientists found that the development and fate of each digit depends on a surprisingly dynamic process in unanticipated locations and involving unexpected players.

The UW-Madison team showed that growth begins in a portion of the developing digit they have named the phalanx-forming region (PFR). They illustrated that phalanges, structures that later become finger or toe bones, arise not from cartilage cells but from mesenchymal cells. And they discovered that a complex array of signals from a variety of genes at different times combine to form each phalanx.

Though the research was done on chick digits, it may have implications for humans born with a genetic condition known as bradydactyly, or stubby fingers and toes. The work was undertaken in the laboratory of John Fallon, the Harland Winfield Mossman Professor of Anatomy at the SMPH, who for years has sought to understand how cell fate is determined and patterning-of digits, teeth and feathers-is achieved during embryonic development.

In birds and mammals, digits arise in the mitten-shaped autopod, or developing foot, which consists of two alternating regions. The digital rays, made up of cartilage and mesenchyme, become the phalanges in the adult chicken's toes. These alternate with the interdigits, also consisting of mesenchymal tissue, which fill the space between the digit rays and eventually regress.

Scientists know that the gene Sonic Hedgehog (SHH) plays an important role in determining the form and number of digits, and many believe that other secondary signaling centers downstream of SHH also are involved in establishing a particular digit's identity.

In a 2000 paper published in Science, Fallon and graduate student Randall Dahn showed that the interdigit tissue was more important than previously thought. It was not just a spacer between developing digits; experimental manipulations showed that it controlled how the neighboring digit would develop. The team proposed that different signal levels in each interdigit resulted in specific digit identities.

"We thought that bone morphogenic protein (BMP) signals from interdigit cells were sent to the digit primordium, a rod of cartilage, in the neighboring digit ray, breaking up the cartilage into phalanges," Fallon says.

Sean Hasso, Fallon's current graduate student, wanted to know precisely which cells in the digital ray give rise to phalanges and which molecular events determine the number, size and shape of each phalanx. Performing microsurgery and cell marking studies on the embryonic chick autopod, Hasso showed that the cells that eventually form phalanges arise from the growth of mesenchyme at the tip of the digital ray.

"This finding is absolutely contrary to what we and other scientists had been thinking-which was that growth and phalanx formation occurred in the cartilaginous rods in the digit primordia," says Fallon. "These observations were the foundation for further studies."

In the next set of experiments, Takayuki Suzuki, a post-doctoral fellow in the Fallon lab, conducted an in-depth examination of several aspects of genetic expression in the PFR. He observed that the up-regulation of a gene called Sox9 indicated that the cells of the PFR commit to becoming cartilage.

The scientists were most interested to see that these cells also up-regulated a BMP receptor. Suzuki devised an assay to quantitate BMP receptor signaling in the PFR cells. The assay showed that the signaling activity through the BMP receptor correlated with the digit that forms either normally or after experimental manipulation of the interdigit.

"Our studies showed that a specific region of mesenchymal cells in the digital ray receive the interdigital signal, and that BMP receptor signaling in this region plays a central role in the process," notes Fallon. "Changes in the levels of signaling lead to different developmental outcomes."

The research explains how improper signaling through specific BMP receptors may lead to malformations of phalanges, such as those seen in certain types of bradydactyly in humans.

"The molecular mechanisms controlling the formation of chicken and mammalian limbs, including those of humans, are similar," says Fallon. "We can learn a great deal about the causes of human malformations from studying these mechanisms in the developing chick."


'/>"/>

Contact: Dian Land
dj.land@hosp.wisc.edu
608-261-1034
University of Wisconsin-Madison
Source:Eurekalert

Related biology news :

1. Antarcticas coldest, darkest season draws Montana State University researchers
2. Researchers discover the structural alphabet of RNA
3. Carnegie Mellon researchers create invisibiity cloak
4. Researchers visualize complex pigment mixtures in living cells
5. Viruses evolve to play by host rules, according to University of Pennsylvania researchers
6. U of Minnesota researchers discover key for converting waste to electricity
7. Northern right whales head south to give birth, leave genetic fingerprints with NOAA researchers
8. ETH Zurich researchers develop antibody test
9. Electronic structure of DNA revealed for 1st time by Hebrew University and collaborating researchers
10. Researchers offer new theory for dogfish and skate population outburst on Georges Bank
11. UCLA researchers solve decade-old mystery
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/13/2017)... April 13, 2017 According to a new market ... Identity Analytics, Identity Administration, and Authorization), Service, Authentication Type, Deployment Mode, Vertical, ... Market is expected to grow from USD 14.30 Billion in 2017 to ... of 17.3%. ... MarketsandMarkets Logo ...
(Date:4/11/2017)... 2017 No two people are believed ... New York University Tandon School of Engineering and ... that partial similarities between prints are common enough ... phones and other electronic devices can be more ... lies in the fact that fingerprint-based authentication systems ...
(Date:4/5/2017)... SEATTLE , April 5, 2017  The Allen ... the Allen Cell Explorer: a one-of-a-kind portal and dynamic ... large-scale 3D imaging data, the first application of deep ... edited human stem cell lines and a growing suite ... the platform for these and future publicly available resources ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... Bay, Florida (PRWEB) , ... October 11, 2017 ... ... and Drug Administration (FDA) has granted orphan drug designation to SBT-100, its novel ... (sdAb) for the treatment of osteosarcoma. SBT-100 is able to cross the cell ...
(Date:10/10/2017)... ... October 10, 2017 , ... ... company advancing targeted antibody-drug conjugate (ADC) therapeutics, today confirmed licensing rights that ... Polymerized Liposomal Nanoparticle), a technology developed in collaboration with Children’s Hospital Los ...
(Date:10/10/2017)... Poway, California (PRWEB) , ... October 10, 2017 , ... ... afternoon speaking at his local San Diego Rotary Club. The event ... San Diego, CA and had 300+ attendees. Dr. Harman, DVM, MPVM was joined ...
(Date:10/10/2017)... Calif. , Oct. 10, 2017 SomaGenics ... from the NIH to develop RealSeq®-SC (Single Cell), expected ... for profiling small RNAs (including microRNAs) from single cells ... Program highlights the need to accelerate development of approaches ... "New techniques for measuring levels ...
Breaking Biology Technology: