Navigation Links
Wireless, implanted sensor broadens range of brain research
Date:3/19/2013

A compact, self-contained sensor recorded and transmitted brain activity data wirelessly for more than a year in early stage animal tests, according to a study funded by the National Institutes of Health. In addition to allowing for more natural studies of brain activity in moving subjects, this implantable device represents a potential major step toward cord-free control of advanced prosthetics that move with the power of thought. The report is in the April 2013 issue of the Journal of Neural Engineering.

"For people who have sustained paralysis or limb amputation, rehabilitation can be slow and frustrating because they have to learn a new way of doing things that the rest of us do without actively thinking about it,'' said Grace Peng, Ph.D., who oversees the Rehabilitation Engineering Program of the National Institute of Biomedical Imaging and Bioengineering (NIBIB), part of NIH. "Brain-computer interfaces harness existing brain circuitry, which may offer a more intuitive rehab experience, and ultimately, a better quality of life for people who have already faced serious challenges."

Recent advances in brain-computer interfaces (BCI) have shown that it is possible for a person to control a robotic arm through implanted brain sensors linked to powerful external computers. However, such devices have relied on wired connections, which pose infection risks and restrict movement, or were wireless but had very limited computing power.

Building on this line of research, David Borton, Ph.D., and Ming Yin, Ph.D., of Brown University, Providence, R.I., and colleagues surmounted several major barriers in developing their sensor. To be fully implantable within the brain, the device needed to be very small and completely sealed off to protect the delicate machinery inside the device and the even more delicate tissue surrounding it. At the same time, it had to be powerful enough to convert the brain's subtle electrical activity into digital signals that could be used by a computer, and then boost those signals to a level that could be detected by a wireless receiver located some distance outside the body. Like all cordless machines, the device had to be rechargeable, but in the case of an implanted brain sensor, recharging must also be done wirelessly.

The researchers consulted with brain surgeons on the shape and size of the sensor, which they built out of titanium, commonly used in joint replacements and other medical implants. They also fitted the device with a window made of sapphire, which electromagnetic signals pass through more easily than other materials, to assist with wireless transmission and inductive charging, a method of recharging also used in electronic toothbrushes. Inside, the device was densely packed with the electronics specifically designed to function on low power to reduce the amount of heat generated by the device and to extend the time it could work on battery power.

Testing the device in animal modelstwo pigs and two rhesus macaquesthe researchers were able to receive and record data from the implanted sensors in real time over a broadband wireless connection. The sensors could transmit signals more than three feet and have continued to perform for over a year with little degradation in quality or performance.

The ability to remotely record brain activity data as an animal interacts naturally with its environment may help inform studies on muscle control and the movement-related brain circuits, the researchers say. While testing of the current devices continues, the researchers plan to refine the sensor for better heat management and data transmission, with use in human medical care as the goal.

"Clinical applications may include thought-controlled prostheses for severely neurologically impaired patients, wireless access to motorized wheelchairs or other assistive technologies, and diagnostic monitoring such as in epilepsy, where patients currently are tethered to the bedside during assessment," said Borton.


'/>"/>

Contact: Karin Lee
nibibpress@mail.nih.gov
301-496-3500
NIH/National Institute of Biomedical Imaging & Bioengineering
Source:Eurekalert  

Related biology news :

1. Miniature pressure sensors for medical touch
2. Tiny electrical sensors could signal faster MRSA diagnosis
3. Miniature Sandia sensors may advance climate studies
4. Carnegie Mellon fluorescent biosensor reveals mechanism critical to immune system amplification
5. Biosensor illuminates compounds to aid fight against TB
6. Ultrasensitive biosensor promising for medical diagnostics
7. A whale of a discovery: New sensory organ found in rorqual whales
8. Scientists discover a new sensory organ in the chin of baleen whales
9. UC Berkeley chemists installing first carbon dioxide sensor network in Oakland
10. Motion sensors detect horse lameness earlier than veterinarians, MU study finds
11. Diving board sensors key to DNA detection
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Wireless, implanted sensor broadens range of brain research
(Date:11/21/2016)... VILNIUS, Lithuania , Nov. 21, 2016 /PRNewswire/ ... identification and object recognition technologies, today announced that ... for smart cards was submitted for the ... and successfully passed all the mandatory steps of ... III evaluation is a continuing test of fingerprint ...
(Date:11/17/2016)...  AIC announces that it has just released a new white paper authored by ... plus high speed data transfer storage solutions. Photo - http://photos.prnewswire.com/prnh/20161116/440463 ... ... ... Setting up a high performance computing or HPC system can ...
(Date:11/15/2016)... 15, 2016 Research and Markets has announced ... 2021" report to their offering. ... ... by 2021 from USD 6.21 Billion in 2016, growing at a ... of the bioinformatics market is driven by the growing demand for ...
Breaking Biology News(10 mins):
(Date:12/6/2016)... ... December 06, 2016 , ... ... company focused on discovery and development of precision treatments for neurodegenerative diseases, ... for Alzheimer’s disease (AD) inhibited the direct neurotoxic effect of prion-like forms ...
(Date:12/5/2016)... ... December 05, 2016 , ... This ... nanocrystals and cellulose nanofibrils. The composition claims are not limited to any ... directed to combination with polymers, carbon fibers, graphene, and other materials. A ...
(Date:12/5/2016)... ... , ... In anticipation of AxioMed’s exclusive cleanroom manufacturing facility ... Jake Lubinski will be traveling to Germany on December 6th. Mr. Lubinski will ... to discuss the benefits of a viscoelastic total disc replacement. , AxioMed received ...
(Date:12/5/2016)... - Resverlogix Corp. ("Resverlogix" or the "Company") (TSX:RVX) ... Monitoring Board (DSMB) for the Company,s Phase 3 ... has completed a second planned safety review and ... without any modifications. The DSMB reviewed available study ... concerns were identified. The DSMB will conduct additional ...
Breaking Biology Technology: