Navigation Links
Why chemotherapy causes more infertility in women than in men
Date:2/22/2011

Chemotherapeutic agents, used in cancer treatment, destroy not only cancer cells but also healthy cells, thus affecting germ cells as well. Consequently, after surviving cancer many female patients are confronted with the diagnosis: infertility. For a long time a relationship between infertility and chemotherapeutic agents has been assumed, but until now, the exact mechanism was not known.

Scientists from the research group of Prof. Volker Dtsch (Institute of Biophysical Chemistry, Goethe University Frankfurt) in cooperation with international partners have now started to unveil the mechanism of cancer treatment related infertility. Their results are published in the internationally renowned journal Cell. Mainly women suffer from infertility because the quality control in the oocytes is different from male germ cells. Male germ cells are produced throughout the whole life span but the number of female germ cells is restricted and already fixed before birth. If the oocytes are damaged during cancer treatment, they are destroyed by the female quality control mechanism.

Essential for this process is the protein p63 which shows striking similarity to another important protein of the same family: p53. p53 is also named "guardian of the genome" because of its regulatory function in cell division and cell death of damaged cells and, therefore, plays a key role in the suppression of genetic anomalies which could lead to cancer. In more than half of all human tumors p53 is altered and no longer functional.

For a long time the exact regulation of p53 and p63 and the similarities and differences between these two proteins have been the object of many international research projects. In the currently accepted model the concentration of p53 in healthy cells is relatively low. If genetic anomalies occur in a cell which could cause the transition to a cancer cell, the concentration of p53 increases and four p53 proteins form a tetramer. In this tetrameric state the tumor suppressor is active and initiates either repair of the damaged DNA or programmed cell death. Surprisingly, despite the fact that p53 and p63 show high similarity, the mechanism by which the activity of p63 is controlled in oocytes seemed to be different.

The research group of Prof. Volker Dtsch could show now that the two mechanisms that regulate the activity of p53 and of p63 are closely related, but distinct. The level of p63 in normal oocytes is high and the protein is kept in a closed dimeric and inactive state. If DNA double-strand breaks occur, for example caused by radioactive radiation, p63 becomes phosphorylated. As a result of this phosphorylation, the structure of the p63 dimer changes to an open state allowing the attachment of a second phosphorylated dimer. The resulting active p63 tetramer is similar to the active p53 tetramer and leads to the death of the damaged oocyte. Many of the chemotherapeutic agents cause DNA double-strand breaks which activate p63, finally leading to the cell death of the oocytes.

The related proteins of model organisms such as Caenorhabditis elegans (nematode) are also investigated by the Dtsch group. Because of the short life span of this worm its p63 related protein does not act as a tumor suppressor but controls the genetic stability of the germ cells. The quality control of germ cells, thus, seems to be the original function of the p53 protein family and leads to the conclusion that p63 is the ancestor of the entire p53 family.

Interestingly, p63 shows an additional function: it is essential for the maintenance of stem cells in epithelial layers like skin. Because of the close similarity of stem and germ cells, this second function shows the evolutionary process of the p53 protein family from p63-like proteins, that in simple organisms are responsible for the genetic stability of germ cells, via controlling the maintenance of stem cells in organisms with renewal tissues, finally to p53-like tumor repressors in somatic cells. This demonstrates the outstanding importance of the p53 protein family for the development and health of human beings.


'/>"/>

Contact: Prof. Volker Doetsch
vdoetsch@em.uni-frankfurt.de
49-697-982-9631
Goethe University Frankfurt
Source:Eurekalert

Related biology news :

1. A loose grip provides better chemotherapy
2. Invention could improve cancer drug delivery, lessen harmful effects of chemotherapy
3. Virginia Tech engineers introduce thermotherapy as a chemotherapy alternative
4. Major component in turmeric enhance effect of chemotherapy drug in head and neck cancer
5. Novocure reports data showing TTF therapy in combination with chemotherapy has the potential to increase overall survival for patients with advanced non-small cell lung cancer
6. Identifying subsets of patients who will respond to subsequent lines of chemotherapy
7. New technology may prolong the life of implanted devices, from pacemakers to chemotherapy ports
8. TGen finds protein inhibitor revives chemotherapy for ovarian patients
9. Duke develops nano-scale drug delivery for chemotherapy
10. Common chemotherapy drug triggers fatal allergic reactions
11. CSHL team develops mouse models of leukemia that predict response to chemotherapy
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/16/2016)... , June 16, 2016 ... size is expected to reach USD 1.83 billion ... Grand View Research, Inc. Technological proliferation and increasing ... applications are expected to drive the market growth. ... , The development of advanced multimodal ...
(Date:6/3/2016)... June 3, 2016 ... Nepal hat ein ... hochsicherer geprägter Kennzeichen, einschließlich Personalisierung, Registrierung und ... der Produktion und Implementierung von Identitätsmanagementlösungen. Zahlreiche ... im Januar teilgenommen, aber Decatur wurde als ...
(Date:5/24/2016)... Ampronix facilitates superior patient care by providing unparalleled technology to leaders of the medical ... premium product recently added to the range of products distributed by Ampronix. ... ... ... Ampronix News ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... 23, 2016   Boston Biomedical , an ... designed to target cancer stemness pathways, announced that ... Orphan Drug Designation from the U.S. Food and ... cancer, including gastroesophageal junction (GEJ) cancer. Napabucasin is ... inhibit cancer stemness pathways by targeting STAT3, and ...
(Date:6/23/2016)... 23, 2016  The Prostate Cancer Foundation (PCF) is pleased to ... faster cures for prostate cancer. Members of the Class of 2016 were selected ... Read More About the Class of 2016 PCF Young Investigators ... ... ...
(Date:6/23/2016)... NC (PRWEB) , ... June 23, 2016 , ... In ... University Hospital in Denmark detail how a patient who developed lymphedema after being treated ... tissue. The results could change the paradigm for dealing with this debilitating, frequent side ...
(Date:6/23/2016)... ... June 23, 2016 , ... ... at the Pennsylvania Convention Center and will showcase its product’s latest features from ... also be presenting a scientific poster on Disrupting Clinical Trials in The Cloud ...
Breaking Biology Technology: