Navigation Links
Why carbon nanotubes spell trouble for cells

PROVIDENCE, R.I. [Brown University] It's been long known that asbestos spells trouble for human cells. Scientists have seen cells stabbed with spiky, long asbestos fibers, and the image is gory: Part of the fiber is protruding from the cell, like a quivering arrow that's found its mark.

But scientists had been unable to understand why cells would be interested in asbestos fibers and other materials at the nanoscale that are too long to be fully ingested. Now a group of researchers at Brown University explains what happens. Through molecular simulations and experiments, the team reports in Nature Nanotechnology that certain nanomaterials, such as carbon nanotubes, enter cells tip-first and almost always at a 90-degree angle. The orientation ends up fooling the cell; by taking in the rounded tip first, the cell mistakes the particle for a sphere, rather than a long cylinder. By the time the cell realizes the material is too long to be fully ingested, it's too late.

"It's as if we would eat a lollipop that's longer than us," said Huajian Gao, professor of engineering at Brown and the paper's corresponding author. "It would get stuck."

The research is important because nanomaterials like carbon nanotubes have promise in medicine, such as acting as vehicles to transport drugs to specific cells or to specific locations in the human body. If scientists can fully understand how nanomaterials interact with cells, then they can conceivably design products that help cells rather than harm them.

"If we can fully understand (nanomaterial-cell dynamics), we can make other tubes that can control how cells interact with nanomaterials and not be toxic," Gao said. "We ultimately want to stop the attraction between the nanotip and the cell."

Like asbestos fibers, commercially available carbon nanotubes and gold nanowires have rounded tips that often range from 10 to 100 nanometers in diameter. Size is important here; the diameter fits well within the cell's parameters for what it can handle. Brushing up against the nanotube, special proteins called receptors on the cell spring into action, clustering and bending the membrane wall to wrap the cell around the nanotube tip in a sequence that the authors call "tip recognition." As this occurs, the nanotube is tipped to a 90-degree angle, which reduces the amount of energy needed for the cell to engulf the particle.

Once the engulfing endocytosis begins, there is no turning back. Within minutes, the cell senses it can't fully engulf the nanostructure and essentially dials 911. "At this stage, it's too late," Gao said. "It's in trouble and calls for help, triggering an immune response that can cause repeated inflammation."

The team hypothesized the interaction using coarse-grained molecular dynamic simulations and capped multiwalled carbon nanotubes. In experiments involving nanotubes and gold nanowires and mouse liver cells and human mesothelial cells, the nanomaterials entered the cells tip-first and at a 90-degree angle about 90 percent of the time, the researchers report.

"We thought the tube was going to lie on the cell membrane to obtain more binding sites. However, our simulations revealed the tube steadily rotating to a high-entry degree, with its tip being fully wrapped," said Xinghua Shi, first author on the paper who earned his doctorate at Brown and is at the Chinese Academy of Sciences in Beijing. "It is counter-intuitive and is mainly due to the bending energy release as the membrane is wrapping the tube."

The team would like to study whether nanotubes without rounded tips or less rigid nanomaterials such as nanoribbons pose the same dilemma for cells.

"Interestingly, if the rounded tip of a carbon nanotube is cut off (meaning the tube is open and hollow), the tube lies on the cell membrane, instead of entering the cell at a high-degree-angle," Shi said.


Contact: Richard Lewis
Brown University

Related biology news :

1. Carbon nanoparticles break barriers -- and that may not be good
2. NJIT professor working with graphene, carbon nanotubes to receive honor
3. Up from the depths: How bacteria capture carbon in the twilight zone
4. Irrigations impacts on global carbon uptake
5. Increased tropical forest growth could release carbon from the soil
6. To avoid carbon debt, CRP beats fields of corn, soybeans
7. Carbon hitches a ride from field to market
8. USDA scientists study effects of rising carbon dioxide on rangelands
9. Organic carbon suggests Swedish lakes were less acidified
10. Scientists report dramatic carbon loss from massive Arctic wildfire
11. Northwest Forest Plan has unintended benefit - carbon sequestration
Post Your Comments:
Related Image:
Why carbon nanotubes spell trouble for cells
(Date:6/3/2016)... June 3, 2016 ... Nepal hat ein ... hochsicherer geprägter Kennzeichen, einschließlich Personalisierung, Registrierung und ... der Produktion und Implementierung von Identitätsmanagementlösungen. Zahlreiche ... im Januar teilgenommen, aber Decatur wurde als ...
(Date:5/24/2016)... Calif. , May 24, 2016 Ampronix facilitates superior patient care by ... LMD3251MT  3D medical LCD display is the latest premium product recently added to the ... ... ... Sony 3d Imaging- LCD Medical Display- Ampronix News ...
(Date:5/3/2016)... VILNIUS, Lithuania , May 3, 2016 /PRNewswire/ ... today released the MegaMatcher Automated Biometric Identification ... deployment of large-scale multi-biometric projects. MegaMatcher ABIS can ... and accuracy using any combination of fingerprint, face ... of MegaMatcher SDK and MegaMatcher ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... WI (PRWEB) , ... June 23, 2016 , ... ... supplements, is pleased to announce the launch of their brand, UP4™ Probiotics, into ... for over 35 years, is proud to add Target to its list of ...
(Date:6/23/2016)... TORONTO , June 23, 2016 /PRNewswire/ - ... Ontario biotechnology company, Propellon ... the development and commercialization of a portfolio of ... cancers. Epigenetic targets such as WDR5 represent an ... contribute significantly in precision medicine for cancer patients. ...
(Date:6/23/2016)... 23, 2016 Houston Methodist Willowbrook Hospital ... Sports Association to serve as their official health ... Methodist Willowbrook will provide sponsorship support, athletic training ... association coaches, volunteers, athletes and families. ... Sports Association and to bring Houston Methodist quality ...
(Date:6/23/2016)...  The Prostate Cancer Foundation (PCF) is pleased to announce 24 ... for prostate cancer. Members of the Class of 2016 were selected from a ... Read More About the Class of 2016 PCF Young Investigators ... ... ...
Breaking Biology Technology: