Navigation Links
Whitehead Institute researchers create 'naïve' pluripotent human embryonic stem cells
Date:7/24/2014

CAMBRIDGE, Mass. (July 24, 2014) For years, researchers and patients have hoped that embryonic stem cells (ESCs)capable of forming nearly any cell type in the bodycould provide insight into numerous diseases perhaps even be used to treat them. Yet progress has been hampered by the inability to transfer research and tools from mouse ESC studies to their human counterparts, in part because human ESCs are "primed" and slightly less plastic than the mouse cells.

Now Thorold Theunissen, Benjamin Powell, and Haoyi Wang, who are scientists in the lab of Whitehead Institute Founding Member Rudolf Jaenisch, have discovered how to manipulate and maintain human ESCs in a "nave" or base pluripotent state similar to that of mouse ESCs without the use of any reprogramming factors. Their work is described in this week's issue of the journal Cell Stem Cell.

Nave mouse ESCs are well-studied, and scientists have a strong understanding of how they function and mature into more specialized cells. But this understanding is of limited use in human ESC research, as the human cells look different, grow differently, and rely on different genes than mouse ESCs. According to Theunissen, the disparities between mouse and human ESCs are attributable not to species-specific differences but rather to differences of cell state.

In nave mouse ESCs, a particular enhancer of the gene OCT4 is active, prompting the researchers to look for the presence of this marker as a means to identify rare nave human ESCs. With this unbiased reporter system in hand, the Jaenisch team determined that a cocktail of five small molecules with a few additional growth factors can induce and support the conversion of primed human ESCs to a nave state with or without using reprogramming factors to jumpstart the process.

By applying this cocktail to human blastocysts, the scientists could also isolate nave human stem cells.

"This is important because if this cocktail only works in existing lines of human ESCs, you might wonder, does this really capture a distinct state or is this artificial?" says Theunissen. "Since the cocktail works directly on human blastocysts, I think it suggests that we're really capturing a cell state that is already present in the early human embryo."

Although other labs have recently reported creating nave human ESCs, Theunissen, Powell, and Wang question these results as the cells produced through these techniques lack the gene expression and epigenetic profiles of nave human ESCs. Yet, the Jaenisch lab believes they have now finally unlocked a way to create and maintain this important type of cell and are looking forward to exploring its potential.

"We have discovered a new pathway to generate something we believe is a totally different state of pluripotency in human ESCs that is very close to the mouse nave state," says Jaenisch, who is also a professor of biology at MIT. "These cells may be essential for ESC technology, and that is an area we're looking forward to investigating. Now the big question for us is, does this state exist in vivo in embryos? Right now, we don't know, and that is a very interesting line of research."


'/>"/>

Contact: Nicole Giese Rura
rura@wi.mit.edu
617-258-6851
Whitehead Institute for Biomedical Research
Source:Eurekalert

Related biology news :

1. Whitehead scientists identify major flaw in standard approach to global gene expression analysis
2. Diabetes Research Institute develops oxygen-generating biomaterial
3. Space research institute honors Sen. Hutchison with Pioneer Award
4. Scripps Research Institute scientists find promising vaccine targets on hepatitis C virus
5. Minneapolis Heart Institute selected to participate in Cardiovascular Cell Therapy Research Network
6. Cary Institute Hydrofracking Forum
7. Scripps Research Institute Professor Gerald F. Joyce elected to American Academy of Arts & Sciences
8. Scripps Research Institute scientists develop antidote for cocaine overdose
9. NJIT, Chinas Bengbu Glass Institute sign agreement for R&D, training
10. Merkin Family Foundation to fund next generation of Broad Institute scientists
11. TGen leads new National Institutes of Health study of brain tumors
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:11/28/2016)... LONDON , Nov. 28, 2016 ... at a rate of 16.79%" The biometric system ... to grow further in the near future. The biometric ... 32.73 billion in 2022, at a CAGR of 16.79% ... biometrics system, integration of biometric technology in smartphones, rising ...
(Date:11/22/2016)... According to the new market research report "Biometric System Market by Authentication ... (Hardware and Software), Function (Contact and Non-contact), Application, and Region - Global ... from USD 10.74 Billion in 2015 to reach USD 32.73 Billion by ... Continue Reading ... ...
(Date:11/21/2016)... 21, 2016   Neurotechnology , a provider ... today announced that the MegaMatcher On Card fingerprint ... for the NIST Minutiae Interoperability Exchange (MINEX) ... mandatory steps of the evaluation protocol. ... test of fingerprint templates used to establish compliance ...
Breaking Biology News(10 mins):
(Date:12/8/2016)... , ... December 08, 2016 , ... ... the business of innovation is taking over sports. On Thursday, December 15th a ... how technology is disrupting the playing field at a Smart Talk session. Smart ...
(Date:12/8/2016)... SAN DIEGO , Dec. 8, 2016 /PRNewswire-USNewswire/ ... treatments for congestive heart failure and type 2 ... license for a novel adeno-associated virus (AAV) vector ... Kay , M.D., Ph.D., at Stanford University. The ... of its paracrine gene therapy product pipeline. ...
(Date:12/8/2016)... ... December 08, 2016 , ... ... that provide essential device-to-computer interconnect using USB or PCI Express, announced the FOMD-ACV-A4, ... The FOMD-ACV-A4 is a small, thin, SODIMM-style module that fits a standard 204-pin ...
(Date:12/8/2016)...  Anaconda BioMed S.L., a pre-clinical stage medical device ... neuro-thrombectomy system for the treatment of Acute Ischemic Stroke ... to join its Scientific Advisory Board (SAB). The SAB ... scientific and clinical experts to Anaconda BioMed S.L., as ... ® to its clinical phase. The SAB is ...
Breaking Biology Technology: