Navigation Links
Which way is up?
Date:5/22/2014

What do sled dogs and cell clusters have in common? According to research by UC Santa Barbara's Denise Montell, they both travel in groups and need a leader to make sure they all follow in the same direction.

Montell, Duggan Professor of Molecular Cellular and Developmental Biology, and colleagues worked on three independent projects involving E-cadherin, a protein found in epithelial cells throughout the body. The researchers used fruit-fly ovaries to uncover the role played by E-cadherin in collective cell migration. Their findings are reported today in the journal Cell.

According to traditional scientific dogma, E-cadherin acts like the mortar between bricks, holding cells together and preventing motility. Montell's team found the opposite: Cadherin is actually promoting the ability of cells to move and migrate. "It's doing it in three different ways in three different parts of the cell," Montell said. "In each spot in the cell, cadherin is doing something different and all of those function together to orchestrate the movement of cells."

Montell's team sought to understand the E-cadherin-mediated migration of these cells with three separate approaches that converged on one idea: the guidance of cell movement. "This kind of motility is similar to what tumor cells do when they metastasize," Montell said, "and it's part of the normal development of different tissues."

One researcher studied the interaction between the lead cell and the following cells; hence, the sled-dog analogy. The lead cell is tethered by E-caderin to other cells in the cluster and pulls them in the proper direction in the same way the lead sled dog guides its team.

While E-cadherin is distributed throughout the cell cluster, the lead cell determined by the strong force of E-cadherin that causes the cell to protrude in the direction of the movement can communicate with the side and rear cells and prohibit them from protruding. This creates a front and back to the entire cluster of cells.

Lead author Danfeng Cai, a graduate student in the Denise Montell Lab, suppressed cadherin in different cell types and analyzed the visible guidance defects by making movies of the migrating cells. When cells lacked E-cadherin, they were unable to migrate as an organized group, and the direction of their movement was random and irregular.

Another member of the research team designed an optical sensor of mechanical tension a kind of microscopic spring and inserted it into the cadherin protein. This enabled the measurement of force on the E-cadherin molecules. The results showed that even though the distribution of the protein was uniform, the force per molecule was stronger at the front. "It's kind of amazing that you can make that measurement in living cells," Montell said.

In addition to highlighting E-cadherin's role in cell migration, the paper introduces new experimental tools the team used to probe and analyze E-cadherin in living tissue, the first being the optical sensor of mechanical tension. The researchers found that E-cadherin molecules implanted with the sensor were fully functional. This allowed them to generate transgenic flies containing only E-cadherin molecules with optical sensors.

"This in vivo tension sensor could revolutionize the area of research that strives to elucidate the interplay between biochemical signals and mechanical forces during morphogenesis," Montell said. "In contrast to other approaches that attempt to measure forces in tissues, such as laser cutting, this one is nonperturbing."

A second tool Montell's team developed and reported for the first time is morphodynamic profiling. This quantitative approach allowed the researchers to compare changing cell morphologies over time between different genotypes.

Data from the cell movement imaging were mathematically translated into graphs showing cell protrusion and retraction velocities at different points in time. An analysis of 26 parameters showed that the E-cadherin and the chemoattractant receptors thought to be the guiding cell movement had statistically indistinguishable phenotypes, indicating that E-cadherin and the classic guidance receptors function in the same pathway.

"E-cadherin is serving multiple purposes," Montell concluded, "all of which function together to coordinate the collective ability of these cells to sense direction. Our work demonstrates three completely different approaches that all show the same result." While E-cadherin serves different functions in different subcellular locations, it appears to drive cohesive cell migration, an entirely new role for this much-studied molecule.


'/>"/>

Contact: Julie Cohen
julie.cohen@ucsb.edu
805-893-7220
University of California - Santa Barbara
Source:Eurekalert  

Related biology news :

1. Which came first, bi- or tricellular pollen? New research updates a classic debate
2. A plant which acclimatizes with no exterior influence
3. Ancient minerals: Which gave rise to life?
4. What determines which sources within an episode are successfully remembered?
5. LaserLock Technologies Files A New Provisional Patent Which Secures Player Identity On Internet Gaming Platforms
6. Research on which gender pays for dates shows change and resistance from convention
7. Which Prostate Cancers Really Need Treatment?
8. Innovative MIT study estimates extent to which air pollution in China shortens human lives
9. Detection of apple juices and cereals which exceed permitted levels of mycotoxins
10. Mechanism discovered which aids Legionella to camouflage itself in the organism
11. Scientists sequence genome of sacred lotus, which likely holds anti-aging secrets
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Which way is up?
(Date:4/28/2016)... BANGALORE, India , April 28, 2016 ... subsidiary of Infosys (NYSE: INFY ), and Samsung ... global partnership that will provide end customers with a ... and payment services.      (Logo: http://photos.prnewswire.com/prnh/20130122/589162 ... for financial services, but it also plays a fundamental part ...
(Date:4/26/2016)... April 27, 2016 Research ... Multi-modal Biometrics Market 2016-2020"  report to their offering.  ... The analysts forecast the global multimodal ... 15.49% during the period 2016-2020.  Multimodal ... sectors such as the healthcare, BFSI, transportation, automotive, ...
(Date:4/15/2016)... Research and Markets has announced ... 2016-2020,"  report to their offering.  , ... global gait biometrics market is expected to grow ... 2016-2020. Gait analysis generates multiple variables ... to compute factors that are not or cannot ...
Breaking Biology News(10 mins):
(Date:5/27/2016)... READING, England , May ... ( http://www.indegene.com ), ein führender Anbieter von ... Life-Science-Branche, Pharmaunternehmen und Gesundheitsorganisationen, und TranScrip ( ... innovativen wissenschaftlichen Support-Services für den gesamten Produktlebenszyklus, ... heute den Ausbau ihrer bestehenden Allianz an. ...
(Date:5/26/2016)... , May 26, 2016 Despite ... see value in this space. Today,s pre-market research on ActiveWallSt.com ... Radius Health Inc. (NASDAQ: RDUS ), Cerus Corp. ... ARWR ), and Five Prime Therapeutics Inc. (NASDAQ: ... technical briefings at: http://www.activewallst.com/ ...
(Date:5/25/2016)... Thailand (PRWEB) , ... May 25, 2016 , ... ... participation of a Thai delegation at BIO 2016 in San Francisco. Located at ... sector will be available to answer questions and discuss the Thai biotechnology and ...
(Date:5/25/2016)... LAKE CITY, UTAH. (PRWEB) , ... May 25, 2016 , ... ... efficiencies in healthcare information exchange, today announced that Charles W. Stellar has been named ... as WEDI’s interim CEO since January 2016. As an executive leader with more than ...
Breaking Biology Technology: