Navigation Links
Which came first, the chicken genome or the egg genome?
Date:10/8/2007

Which came first, the chicken genome or the egg genome?

Researchers have answered a similarly vexing (and far more relevant) genomic question: Which of the thousands of long stretches of repeated DNA in the human genome came first? And which are the duplicates?

The answers, published online by Nature Genetics on October 7, 2007, provide the first evolutionary history of the duplications in the human genome that are partly responsible for both disease and recent genetic innovations. This work marks a significant step toward a better understanding of what genomic changes paved the way for modern humans, when these duplications occurred and what the associated costs are in terms of susceptibility to disease-causing genetic mutations.

Genomes have a remarkable ability to copy a long stretch of DNA from one chromosome and insert it into another region of the genome. The resulting chunks of repeated DNA called segmental duplications hold many evolutionary secrets and uncovering them is a difficult biological and computational challenge with implications for both medicine and our understanding of evolution.

The new evolutionary history, published in Nature Genetics, is from an interdisciplinary team led by biologist Evan Eichler from the University of Washington School of Medicine and computer scientists Pavel Pevzner from University of California, San Diego.

In the past, the highly complex patterns of DNA duplication including duplications within duplications have prevented the construction of an evolutionary history of these long DNA duplications.

To crack the duplication code and determine which of the DNA segments are originals (ancestral duplications) and which are copies (derivative duplications), the researchers looked to both algorithmic biology and comparative genomics.

Identifying the original duplications is a prerequisite to understanding what makes the human genome unstable, said Pavel Pevzner a UCSD computer science professor who modified an algorithmic genome assembly technique in order to deconstruct the mosaics of repeated stretches of DNA and identify the original sequences. Maybe there is something special about the originals, some clue or insight into what causes this colonization of the human genome, said Pevzner.

This is the first time that we have a global view of the evolutionary origin of some of the most complicated regions of the human genome, said paper author Evan Eichler, a professor from the University of Washington School of Medicine and the Howard Hughes Medical Institute.

The researchers tracked down the ancestral origin of more than two thirds of these long DNA duplications. In the Nature Genetics paper they highlight two big picture findings.

First, the researchers suggest that specific regions of the human genome experienced elevated rates of duplication activity at different times in our recent genomic history. This contrasts with most models of genomic duplication which suggest a continuous model for recent duplications.

Second, the researchers show that a large fraction of the recent duplication architecture centers around a rather small subset of core duplicons short segments of DNA that come together to form segmental duplications. These cores are focal points of human gene/transcript innovations.

We found that not all of the duplications in the human genome are created equal. Some of them the core duplicons appear to be responsible for recent genetic innovations the in human genome, explained Pevzner, who is the director of the UCSD Center for Algorithmic and Systems Biology, located at the UCSD division of Calit2.

The authors uncovered 14 such core duplicons.

We note that in 4 of the 14 cases, there is compelling evidence that genes embedded within the cores are associated with novel human gene innovations. In two cases the core duplicon has been part of novel fusion genes whose functions appear to be radically different from their antecedents, the authors write in their Nature Genetics paper.

The results suggest that the high rate of disease caused by these duplications in the normal population estimated at 1/500 and 1/1000 events per birth may be offset by the emergence of newly minted human/great-ape specific genes embedded within the duplications. The next challenge will be determining the function of these novel genes," said Eichler.

To reach these insights, the researchers worked to systematically pinpoint the ancestral origin of each human segmental duplication and organized duplication blocks based on their shared evolutionary history.

Pevzner and his associate Haixu Tang (now professor at University of Indiana) applied their expertise in assembling genomes from millions of small fragments a problem that is not unlike the mosaic decomposition problem in analyzing duplications that the team faced.

Over the years, Pevzner has applied the 250-year old algorithmic idea first proposed by 18th century mathematician Leonhard Euler (of the fame of pi) to a variety of problems and demonstrated that it works equally well for a set of seemingly unrelated biological problems including DNA fragment assembly, reconstructing snake venoms, and now dissecting the mosaic structure of segmental duplications.

In the future, the researchers plan to continue their exploration of evolution.

We want to figure out how the human genome evolved. In the future, we will combine what we know about the evolution within genomes with comparative genomics in order to extend our view of evolution, said Pevzner.


'/>"/>
Contact: Daniel Kane
dbkane@ucsd.edu
858-534-3262
University of California - San Diego
Source:Eurekalert

Related biology news :

1. Identification of specific genes predicts which patients will respond to Hepatitis C treatment
2. Overbearing colored light may reveal a second mechanism by which birds interpret magnetic signals
3. Bacteria which sense the Earths magnetic field
4. Researchers discover which organs in Antarctic fish produce antifreeze
5. First-ever genomic test predicts which lung cancer patients need chemotherapy to live
6. Researchers discover key mechanism by which lethal viruses Ebola and Marburg cause disease
7. Newts which regrow their hearts
8. Reminding doctors which antibiotics to prescribe cuts C. difficile infection rates
9. Killing the messenger RNA -- But which one?
10. Scientists discover stage at which an embryonic cell is fated to become a stem cell
11. First production of human monoclonal antibodies in chicken eggs published in Nature Biotechnology
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/2/2017)... Summary This report provides all the ... interests and activities since 2010. ... Read the full report: http://www.reportlinker.com/p03605615-summary/view-report.html ... report provides an in-depth insight into the partnering activity of ... On demand company reports are prepared upon purchase to ensure ...
(Date:2/28/2017)... , Feb. 28, 2017   Acuant , ... software globally, announces significant enhancements to new and core ... 2016. New products include mobile and desktop Acuant FRM ... TM - a real time manual review of ... idScan® technology provides the fastest and most accurate capture ...
(Date:2/24/2017)... Feb. 24, 2017  EyeLock LLC, a leader of iris-based ... iris biometric solution on the latest Qualcomm® Snapdragon™ ... Mobile World Congress 2017 (February 27 – ... Hall 3, Stand 3E10. The ... security platform—a combination of hardware, software and ...
Breaking Biology News(10 mins):
(Date:3/22/2017)... MarketNewsUpdates.com News Commentary  ... The traditional ways to ... as of late due to the rise of the opioid ... dramatic impact on patient,s quality of life as Biotech and ... new forms of opioid formulations that prevent abuse. Biotech and ...
(Date:3/22/2017)... (PRWEB) , ... March 21, 2017 , ... Okyanos Cell ... seminar as part of their live events series, “Stem Cell Therapy: The Next Phase ... facility under the 2013 Stem Cell Research and Therapy Act, Okyanos maintains ...
(Date:3/22/2017)... ... March 21, 2017 , ... ... peristaltic pump with patented ReNu single-use (SU) cartridge technology. Engineered by the ... feed pumps in SU tangential flow filtration (TFF), virus filtration (VF) and ...
(Date:3/22/2017)... March 22, 2017  Personal Genome Diagnostics Inc. ... testing contract with the U.S. Department of Veterans ... assay with the company,s new CancerSELECT ™ ... actionable pan-cancer profiling test that includes microsatellite instability ... patient response to checkpoint inhibitor immunotherapies. CancerSELECT 125 ...
Breaking Biology Technology: