Navigation Links
Where does stored nuclear waste go?
Date:11/27/2007

Millions of gallons of hazardous waste resulting from the nations nuclear weapons program lie in a remote location in southeastern Washington state called Hanford. Beneath this desert landscape about two million curies of radioactivity and hundreds of thousands of tons of chemicals are captured within the stratified vadose zone below which gives rise to complex subsurface flow paths. These paths create uncertainties about where the contaminants go and what happens to them. With the mighty Columbia River bordering much of the site, where these nuclear wastes migrate, their composition and how fast they are traveling are of vital importance to both people and the environment.

The November issue of Vadose Zone Journal features a series of papers addressing the mysteries within the vadose zone beneath Hanford. The series outlines scientific work funded by the Department of Energy and carried out by scientists at Pacific Northwest National Laboratory and contributing associates with other national laboratories, universities and contractors.

The detailed series outlines how researchers have investigated Hanfords vadose zone to better understand the migration of these contaminants, ultimately reducing or stemming their flow toward the Columbia River, thereby protecting the river and the people living downstream. By studying the geologic, biologic, geochemical and hydrologic conditions at the Hanford site, the researchers seek to understand and manipulate the factors that control contaminants fate and transport.

To date, studies show that fine-grained sediment layers along with rain, snowfall and other climatic conditions affect contaminant transport. For three decades, scientists have studied what happens when water enters and exits the soil, particularly how it affects the movement of the contaminants under various conditions.

Understanding how hydrology and chemistry are interacting below the land surface in the vadose zone and the factors that control those interactions are keys to ultimately dealing with the legacy from nuclear waste production at the Hanford site, said Glendon Gee, Laboratory Fellow at Pacific Northwest National Laboratory. Gee is lead author on the overview paper of the series.

Chemical studies indicate that a number of contaminants, such as cesium, react strongly with Hanford sediments and move only under extreme conditions. Researchers found that another contaminant, uranium, reacts with the sediments in complex ways and its migration varies under different conditions. Other contaminants, such as tritium and nitrate, are relatively mobile. These contaminants have been transported deep into the vadose zone and reached the groundwater. Carbon tetrachloride and other organic compounds have moved in complex ways, as both vapor and liquid, and reached the groundwater.

Additional studies of the fate and transport of contaminants in the vadose zone are ongoing at the Hanford Site. These studies will characterize the extent of contaminant plumes, determine how fast or slow they are migrating and evaluate remediation solutions.


'/>"/>

Contact: Sara Uttech
suttech@soils.org
608-268-4948
Soil Science Society of America  
Source:Eurekalert

Related biology news :

1. Easton, PA Police Officers Armed With BIO-key(R) Mobile Data Solution Access Information Anytime, Anywhere
2. Thousands of starving children could be restored to health with peanut butter program
3. Homeland Security awards 2 grants to Rutgers for nuclear threat detection
4. SNM applauds NAS study showing need to restore federal nuclear medicine research funding
5. Choices and Challenges forum to address nuclear power issue
6. Nuclear desalination
7. Central targets may hinder wider waste management objectives
8. Great potential to improve collection, recycling of Europes electronic waste, says UN report
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Where does stored nuclear waste go?
(Date:4/28/2016)... First quarter 2016:   , ... the first quarter of 2015 The gross margin was ... 18.8) and the operating margin was 40% (-13) Earnings ... flow from operations was SEK 249.9 M (21.2) , ... SEK 7,000-8,500 M. The operating margin for 2016 is ...
(Date:4/15/2016)... 15, 2016 Research and ... Biometrics Market 2016-2020,"  report to their offering.  , ... , ,The global gait biometrics market is expected ... the period 2016-2020. Gait analysis generates ... be used to compute factors that are not ...
(Date:3/29/2016)... March 29, 2016 LegacyXChange, Inc. ... "LEGX" and SelectaDNA/CSI Protect are pleased to announce our ... in a variety of writing instruments, ensuring athletes signatures ... created collectibles from athletes on LegacyXChange will be assured ... the DNA. Bill Bollander , CEO ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... , ... June 23, 2016 , ... ... YM (Yeast and Mold) microbial test has received AOAC Research Institute approval 061601. ... microbial tests introduced last year,” stated Bob Salter, Vice President of Regulatory and ...
(Date:6/23/2016)...   EpiBiome , a precision microbiome engineering company, ... financing from Silicon Valley Bank (SVB). The financing will ... its drug development efforts, as well as purchase additional ... has been an incredible strategic partner to us – ... would provide," said Dr. Aeron Tynes Hammack , ...
(Date:6/23/2016)... NC (PRWEB) , ... June 23, 2016 , ... In ... University Hospital in Denmark detail how a patient who developed lymphedema after being treated ... tissue. The results could change the paradigm for dealing with this debilitating, frequent side ...
(Date:6/23/2016)... LONDON , June 23, 2016 ... & Hematology Review, 2016;12(1):22-8 http://doi.org/10.17925/OHR.2016.12.01.22 ... Review , the peer-reviewed journal from touchONCOLOGY, ... the escalating cost of cancer care is placing ... a result of expensive biologic therapies. With the ...
Breaking Biology Technology: