Navigation Links
Where did insects come from?
Date:2/16/2010

LOS ANGELES - Since the dawn of the biological sciences, mankind has struggled to comprehend the relationships among the major groups of "jointed-legged" animals the arthropods. Now, a team of researchers, including Dr. Joel Martin and Dr. Regina Wetzer from the Natural History Museum of Los Angeles County (NHM), has finished a completely new analysis of the evolutionary relationships among the arthropods, answering many questions that defied previous attempts to unravel how these creatures were connected. Their study is scheduled for publication in the journal Nature on Feb. 24.

Now, for the first time, science has a solid grasp of what those relationships are, and a framework upon which to build. The new study makes a major contribution to our understanding of the nature and origins of the planet's biodiversity. The paper's other researchers are Jerome C. Regier, Andreas Zwick and April Hussey from the University of Maryland Biotechnology Institute; Jeffrey W. Shultz of the University of Maryland's Department of Entomology; and Bernard Ball and Clifford W. Cunningham from Duke University's Department of Biology.

There are millions of distinct species of arthropods, including all the insects, crustaceans, millipedes, centipedes, spiders, and a host of other animals, all united by having a hard external shell and jointed legs. They are by far the most numerous, and most diverse, of all creatures on Earth in terms of the sheer number of species, no other group comes close. They make up perhaps 1.6 million of the estimated 1.8 to 1.9 million described species, dominating the planet in number, biomass, and diversity.

The economic aspects of arthropods are also overwhelming. From seafood industries worth billions of dollars annually to the world's economy, to the importance of insects as pollinators of ornamental and agriculturally important crops, to the medical role played by arthropods (e.g. as disease vectors and parasites), to biological control of introduced species, to their role in every known food web, to toxicology and biopharmaceuticals, arthropods are by far the planet's most important group of animals.

"We've never really known how arthropods, the most successful animals on Earth, evolved into the diversity we see today," said research scientist and co-author Dr. Regina Wetzer. "For me, what makes this study really exciting is getting such a solid understanding of how these animals are related, so that now we can better understand how they evolved."

Because of their amazing diversity, deciphering the evolutionary history and relationships among the major subgroups of arthropods has proven difficult. Scientists have tried using various combinations of features, in recent years including DNA sequences, to try to understand which groups are related through common ancestors. To date, those attempts have been stymied by the sheer number of species and wild shape variations between the various groups.

One of the most important results of this new study is support for the hypothesis that the insects evolved from a group of crustaceans. So flies, honeybees, ants, and crickets all branched off the arthropod family tree from within the lineage that gave rise to today's crabs, shrimp, and lobsters. Another important finding is that the "Chelicerata" (a group that includes the spiders, scorpions, ticks, and mites) branched off very early, earlier than the millipedes, centipedes, crustaceans, and insects. That means that the spiders, for example, are more distantly related to the insects than many researchers previously thought.

This team approached the problem of illuminating the arthropod family tree by using genetic data (DNA sequences) obtained from 75 species carefully selected to sample the range of arthropod diversity. Many previous analyses were based on the sequences of a handful of genes. The researchers in this study, knowing the daunting diversity they faced, used DNA sequence information from as many genes as they could. In the end, they were able to apply data from 62 protein-coding genes to the problem, leading to an extremely well-supported analysis.

"The Museum's collection of arthropods, and in particular its collection of crustaceans, are what made a study like this possible in the first place," says Dr. Joel W. Martin, NHM Curator of Crustacea and one of the authors who designed the study nearly eight years ago. "The wealth of stored biodiversity information contained in it, both in terms of specimens and in terms of the data, theories, and research related to those specimens, are why natural history museums exist, and why they play such a critical role in explaining the world's diversity. Studies like this confirm the incredible value, not only of existing natural history museum collections, but of continuing to add to these collections every year."

A key problem that the research team had to solve was obtaining specimens of some of rare and obscure organisms whose DNA was needed for the analysis. Because of their extensive experience in field biology, this was a major contribution to the project from NHM scientists. Dr. Wetzer recalls lying on the beach with a microscope at Woods Hole, Massachusetts. She was hunting for specimens of a tiny, little-known crustacean that lives between grains of sand. "I got the mystacocarids we needed, but I think I also provided pretty good entertainment to the families at the beach that day," Dr. Wetzer said.


'/>"/>

Contact: Kristin Friedrich
kfriedri@nhm.org
213-763-3532
Natural History Museum of Los Angeles County
Source:Eurekalert  

Related biology news :

1. Easton, PA Police Officers Armed With BIO-key(R) Mobile Data Solution Access Information Anytime, Anywhere
2. Where does stored nuclear waste go?
3. Where have all the lake eels gone? Queens prof asks
4. Where and why humans made skates out of animal bones
5. Where will we find the next generation of engineers?
6. MRSA in hospital intensive care -- whats growing where?
7. Where college students live can impact their weight, eating and exercise habits
8. How and where fat is stored predicts disease risk better than weight
9. New study predicts where corals can thrive
10. Not just for the monkeys: New publication shows evolution is everywhere
11. Where is your soil water? Crop yield has the answer
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Where did insects come from?
(Date:12/5/2016)... , Dec. 5, 2016  The Office ... today published "Can CT Scans Enhance or Replace ... the potential of supporting or replacing forensic autopsies ... CT scan. In response to recommendations ... is exploring using CT scans as a potential ...
(Date:11/30/2016)... Nov. 30, 2016  higi SH llc (higi) ... initiative targeting national brands, industry thought-leaders and celebrity ... respective audiences for taking steps to live healthier, ... in 2012, higi has built the largest self-screening ... 38 million people who have conducted over 185 ...
(Date:11/28/2016)... 28, 2016 "The biometric ... 16.79%" The biometric system market is in the ... the near future. The biometric system market is expected ... at a CAGR of 16.79% between 2016 and 2022. ... biometric technology in smartphones, rising use of biometric technology ...
Breaking Biology News(10 mins):
(Date:12/7/2016)... ... 07, 2016 , ... A new study published in the ... treated, advanced pancreatic cancer, liquid biopsies are not yet an adequate substitute for ... blood sampling may improve the value of a blood-based test.” The study was ...
(Date:12/7/2016)... 2016 Neogen Corporation (NASDAQ: NEOG ... Kephart as its chief science officer — a ... responsibilities at Neogen effective Jan. 1. Kephart ... agribusiness unit of Thermo Fisher Scientific, as well as ... His extensive industry experience also includes the management of ...
(Date:12/7/2016)... , Dec. 7, 2016 /PRNewswire/ - Zenith Capital Corp. ("Zenith" ... that will be presented at the Company,s Annual and Special ... of Shareholders will take place on Thursday, December 15, 2016 ... Glenn Hall (Room EC1040), 4825 Mount Royal Gate SW, ... (MST). A notice of meeting and management information circular, containing ...
(Date:12/7/2016)... Dec. 7, 2016  Biocom, the association for the ... below following passage of 21 st Century Cures legislation ... 30 by a 392-26 vote and in the Senate on ... attributed to Joe Panetta , president & CEO of ... give hope to millions of patients around the world. The ...
Breaking Biology Technology: