Navigation Links
When particles are so small that they seep right through skin
Date:9/30/2008

Scientists are finding that particles that are barely there tiny objects known as nanoparticles that have found a home in electronics, food containers, sunscreens, and a variety of applications can breech our most personal protective barrier: The skin.

The particles under scrutiny by Lisa DeLouise, Ph.D., are almost unfathomably tiny. The particles are less than one five-thousandth the width of a human hair. If the width of that strand of hair were equivalent to the length of a football field, a typical nanoparticle wouldn't even belly up to the one-inch line.

In the September issue of the journal Nano Letters, a team led by DeLouise at the University of Rochester Medical Center published a paper showing that nanoparticles pass through the skin of a living organism, a type of mouse commonly used as a model to study the damaging effects of sunlight.

It's the strongest evidence yet indicating that some nanoparticles are so small that they can actually seep through skin, especially when the skin has been damaged.

The health implications of nanoparticles in the body are uncertain, said DeLouise, an assistant professor of Dermatology and Biomedical Engineering and an expert on the properties of nanoparticles. Other scientists have found that the particles can accumulate in the lymph system, the liver, the nervous system, and in other areas of the body. In her study, she found that the particles accumulate around the hair follicles and in tiny skin folds.

DeLouise, a chemist, points out that her study did not directly address the safety of nanoparticles in any way. "We simply wanted to see if nanoparticles could pass through the skin, and we found that they can under certain conditions," she said.

DeLouise's work is part of a broad field known as nanomedicine that is a strategic area at the University of Rochester Medical Center. The area includes research, like hers, looking at the properties of nanoparticles, as well as possibilities like new forms of drug delivery and nano-sensors that can immediately identify microbes and other threats to our health.

While nanoparticles are becoming widely used in the manufacture of consumer products, they are also under a great deal of study in research labs, and there are some processes including ordinary candle flames that produce them naturally. Some of the particles are so small, less than 10 nanometers wide (a nanometer is one-millionth of a millimeter), that they are nearly as small as the natural gaps between some skin cells.

In its paper in Nano Letters, the team studied the penetration of nanoparticles known as quantum dots that fluoresce under some conditions, making them easier to see and track compared to other nanoparticles. The scientists looked at the distribution of quantum dots in mice whose skin had been exposed to about the same amount of ultraviolet light as might cause a slight sunburn on a person. The team showed that while the nanoparticles were able to breech the skin of all the mice, the particles passed more quickly through skin that had been damaged by ultraviolet light.

Part of the explanation likely lies with the complex reaction of skin when it's assaulted by the Sun's rays. In response to ultraviolet light, cells proliferate, and molecules in the skin known as tight-junction proteins loosen so that new cells can migrate to where they're needed. Those proteins normally act as gatekeepers that determine which molecules to allow through the skin and into the body, and which molecules to block. When the proteins loosen up, they become less selective than usual, possibly giving nanoparticles an opportunity to pass through the barrier.

In the future, DeLouise plans to study titanium dioxide and zinc oxide, two materials that are widely used in sunscreens and other cosmetic products to help block the damaging effects of ultraviolet light. In recent years the size of the metal oxide particles used in many consumer products has become smaller and smaller, so that many now are nanoparticles. The effects of the smaller particle size are visible to anyone who takes a walk on the beach or stops by the cosmetics counter at a department store: The materials are often completely transparent when applied to skin. A transparent lip gloss that protects against UV light, for example, or a see-through sunscreen may contain nanoparticles, DeLouise says.

"A few years ago, a lifeguard at the swimming pool wearing sunscreen might have had his nose completely covered in white. Older sunscreens have larger particles that reflect visible light. But many newer sunscreens contain nanoparticles that are one thousand times smaller, that do not reflect visible light," said DeLouise, who noted that many people apply sunscreens after their skin has been damaged by sunlight.


'/>"/>

Contact: Tom Rickey
tom_rickey@urmc.rochester.edu
585-275-7954
University of Rochester Medical Center
Source:Eurekalert

Related biology news :

1. MU scientists go green with gold, distribute environmentally friendly nanoparticles
2. $2M grant awarded to University of Kentucky for research on nanoparticles and human health
3. New ORNL process brings nanoparticles into focus
4. Nanoparticles assemble by millions to encase oil drops
5. Environmental fate of nanoparticles depends on properties of water carrying them
6. Researchers mimic bacteria to produce magnetic nanoparticles
7. Mesothelin engineered on virus-like particles provides treatment clues for pancreatic cancer
8. Tiny dust particles from Asian deserts common over western United States
9. MIT sculpts 3-D particles with light
10. MIT: Remote-control nanoparticles deliver drugs directly into tumors
11. Worldwide atmospheric measurements will determine the role of atmospheric fine particles
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:1/6/2017)... , Jan. 5, 2017  Delta ID Inc., a ... scanning technology for automotive at CES® 2017. Delta ID ... ) to demonstrate the use of iris scanning as ... authenticate the driver in a car, and as a ... driving experience. Delta ID and Gentex will ...
(Date:1/3/2017)... VEGAS , Jan. 3, 2017 Onitor, ... the introduction of Onitor Track, an innovative biometric data-driven ... men, showcasing this month at the 2017 Consumer Electronics ... In the U.S., the World Health ... more than two-thirds of adults who are overweight or ...
(Date:12/20/2016)... Dec. 20, 2016 The rising popularity ... and leasing is stoking significant interest in keyless ... technology, Bluetooth low energy (BLE), biometrics and near-field ... next wave of wireless technologies in the automotive ... to advanced access systems opens the market to ...
Breaking Biology News(10 mins):
(Date:1/17/2017)... ... January 17, 2017 , ... ... research, recently announced a collaboration with the Heidelberg University Hospital and the German ... library preparation, following the company’s successful launch of its CATS (Capture and ...
(Date:1/17/2017)... -- On January 10 at the Medtech Showcase held in ... in San Francisco , ProclaRx CEO, ... pharmaceutical leaders and public and private investors about the ... destroy biofilms.  Biofilms are a physical ... body,s immune system from eradicating chronic infections. Infections with biofilms ...
(Date:1/16/2017)... , Jan. 16, 2017   Valentin A. Pavlov, ... MD , president and CEO of The Feinstein ... an analysis of how the nervous system regulates the ... develop bioelectronic medicine devices to treat disease ... Nature Neuroscience . The paper examines various ...
(Date:1/16/2017)...  Eurofins Genomics today announced the expansion of its ... receive their primers in a shorter turnaround time, without ... with other providers. Express oligos are available for anyone ... no additional fee. Researchers use the oligos ... sequencing, genotyping, site-directed mutagenesis, and cloning. Often, they are ...
Breaking Biology Technology: