Navigation Links
When fish farms are built along the coast, where does the waste go?
Date:2/15/2009

If you are a fish eater, it's likely that the salmon you had for dinner was not caught in the wild, but was instead grown in a mesh cage submerged in the open water of oceans or bays. Fish farming, a relatively inexpensive way to provide cheap protein to a growing world population, now supplies, by some estimates, 30 percent of the fish consumed by humans.

Two hundred and twenty species of finfish and shellfish are now grown in farms.

Intuitively, it seems a good ideathe more fish grown in pens, the fewer need be taken from wild stocks in the sea. But marine aquaculture can have some nasty side effects, especially when the pens are set near sensitive coastal environments. All those fish penned up together consume massive amounts of commercial feed, some of which drifts off uneaten in the currents. And the crowded fish, naturally, defecate and urinate by the tens of thousands, creating yet another unpleasant waste stream.

The wastes can carry disease, causing damage directly. Or the phosphate and nitrates in the mix may feed an algae bloom that sucks the oxygen from the water, leaving it uninhabitable, a phenomenon long associated with fertilizer runoff.

It has been widely assumed that the effluent from pens would be benignly diluted by the sea if the pens were kept a reasonable distance from shore, said Jeffrey Koseff, a professor of civil and environmental engineering and co-director of Stanford's Woods Institute for the Environment. But early results from a new Stanford computer simulation based on sophisticated fluid dynamics show that the icky stuff from the pens will travel farther, and in higher concentrations, than had been generally assumed, Koseff said.

"What we've basically debunked is the old adage that 'The solution to pollution is dilution,' " he said. "It's a lot more complicated."

The computer modeling (with new Stanford software that goes by the acronym SUNTANS) was conducted by Oliver Fringer, an assistant professor of civil and environmental engineering. He created a virtual coastal marine area resembling California's Monterey Bay.

Previous software, he said, has not been up to the task of accurately predicting where the unhealthy effluent from fish pens will end up, and should probably not be used by state or federal regulators when they approve locations for fish farms.

Existing software is typically derived from models that attempt to describe the drift of effluent from sewage outfall pipes, even though the substances and situations are different from fish farms. (Sewage outflow, for example, is often warmer than the ocean water.)

The fine details of modeling the flow of dissolved fish poop from a submerged cage are not as simple as they may seem. The design of the cage itself can affect the outcome. How much of the current flows through the cage, and how much goes around? Does the moving water swirl into eddies at the edges of the pen? Even the effects of the rotation of the earth on the waste plume comes into play.

The fish farmer would prefer that currents flush out his pens frequently, but as those currents take out the garbage they might unfortunately deliver it to a mangrove ecosystem or a public beach. On the other hand, insufficient flow through the pen can create a "dead zone" on the ocean floor as the fecal matter and uneaten food pile up beneath the fish.

Fringer is designing his software so that it can be used to asses any sitePuget Sound, perhapswhere sufficient digital mapping of the area already exists. SUNTANS comes just in time, said Stanford oceans expert Rosamond Naylor, as federal and local officials begin spelling the details of new health and environmental regulations for fish pens.

Also participating in the research was former postdoctoral researcher Subhas Karan Venayagamoorthy, now at Colorado State University.


'/>"/>

Contact: Dan Stober, Stanford News Service
dstober@stanford.edu
650-721-6965
Stanford University
Source:Eurekalert

Related biology news :

1. The power of multiples: Connecting wind farms can make a more reliable - and cheaper - power source
2. Fish farms drive wild salmon populations toward extinction
3. Turning freshwater farm ponds into crab farms
4. A win-win: U-pick pumpkin farms recycle urban leaves
5. Tilting at wind farms
6. Built-in exercise monitor predicts fitness
7. A built-in strategy for transgene containment
8. New grants will support research in the sustainable built environment
9. Adaptation to parasites drive African fishes along different evolutionary paths
10. Unfavorable ocean conditions likely cause of low 2007 salmon returns along West Coast
11. Underwater microscope helps prevent shellfish poisoning along Gulf Coast of Texas
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/22/2016)... 22, 2016   Acuant , the ... solutions, has partnered with RightCrowd ® ... Visitor Management, Self-Service Kiosks and Continuous Workforce ... add functional enhancements to existing physical access ... venues with an automated ID verification and ...
(Date:6/20/2016)... June 20, 2016 Securus Technologies, a ... solutions for public safety, investigation, corrections and monitoring ... involved, it has secured the final acceptance by ... for Managed Access Systems (MAS) installed. Furthermore, Securus ... to be installed by October, 2016. MAS distinguishes ...
(Date:6/9/2016)... , June 9, 2016  Perkotek an innovation leader in attendance control systems ... seamlessly log work hours, for employers to make sure the right employees are actually ... http://photos.prnewswire.com/prnh/20160609/377486LOGO ... ... ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... NC (PRWEB) , ... June 27, 2016 , ... ... mission to bring innovative medical technologies, services and solutions to the healthcare market. ... and implementation of various distribution, manufacturing, sales and marketing strategies that are necessary ...
(Date:6/27/2016)... , June 27, 2016   Ginkgo Bioworks , ... industrial engineering, was today awarded as one of ... of the world,s most innovative companies. Ginkgo Bioworks ... for the real world in the nutrition, health ... work directly with customers including Fortune 500 companies ...
(Date:6/24/2016)... , ... June 24, 2016 , ... While the majority ... as the Cary 5000 and the 6000i models are higher end machines that use ... height of the spectrophotometer’s light beam from the bottom of the cuvette holder. ...
(Date:6/23/2016)... , ... June 23, 2016 , ... ... pleased to announce the launch of their brand, UP4™ Probiotics, into Target stores ... 35 years, is proud to add Target to its list of well-respected retailers. ...
Breaking Biology Technology: