Navigation Links
When cells go bad
Date:9/30/2008

SALT LAKE CITY -- When a cell's chromosomes lose their ends, the cell usually kills itself to stem the genetic damage. But University of Utah biologists discovered how those cells can evade suicide and start down the path to cancer.

Details of how the process works someday may provide new ways to treat cancer.

The new study of fruit flies is the first to show in animals that losing just one telomere the end of a chromosome can lead to many abnormalities in a cell's chromosomes, which are strands of DNA that carry genes.

"The essential point is that loss of a single telomere may be a primary event that puts a cell on the road to cancer," says Kent Golic, a professor of biology at the University of Utah and senior author of the study, which will be published online this week in the December issue of the journal Genetics.

Fruit flies have four pairs of chromosomes. Humans have 23 pairs. Each chromosome has two ends, called telomeres, which often are compared with the plastic tips of shoe laces. When those tips are lost or break, the shoelace frays. Previous research has shown that aging and cancer often are associated with loss or shortening of telomeres.

Damaged Cells Usually Kill Themselves to Avoid Becoming Cancerous

To protect an organism against cancer, most cells with broken or missing telomeres undergo "apoptosis," also known as cell suicide. But Golic and Simon Titen, a postdoctoral fellow in biology, found how fruit fly cells with a missing telomere sometimes avoid suicide and instead continue to divide and develop early characteristics of cancer.

Normally when a chromosome is damaged, the cell carrying the chromosome turns on a gene named p53, which helps kill the cell. When mutated, p53 fails to carry out this vital function. That is why mutant p53 is a cancer-causing gene and is found in most human tumors.

Golic and Titen found that normal p53 and so-called "checkpoint" proteins named Chk1 and Chk2 are required for the suicide of fruit fly cells with a missing telomere.

They also found that a non-mutant cell lacking a telomere occasionally escapes suicide and divides. Then, its progeny accumulate defects, including the wrong number of chromosomes or chromosomes that have exchanged pieces with each other. Those defects are hallmarks of cancer cells.

One possible reason a cell avoids suicide even after telomere loss and other damage is that chromosomes in the cell's offspring regain telomeres.

"All cancer cells have figured out how to add new telomeres, which allows them to survive and divide indefinitely," says Titen. "By interfering with this process, it might be possible to provide a route therapeutically to treat cancer."

A telomere is made of short sequences of DNA repeated hundreds of times. Proteins bind to the DNA, forming a cap or telomere that protects the end of the chromosome.

In humans, cells in certain tissues, such as the skin, continue to divide over a lifetime. Each time a cell divides, the telomeres become shorter until, in rare cases, the rest of the chromosome is no longer protected. It has been proposed that this can trigger cancer, but previous studies have been done only in yeast or cultured animal cells that are grown in a dish. The new Utah study shows in flies that telomere loss can cause cancer-like changes in a cell.

When Cell Suicide is Blocked, Cells Start on the Road to Cancer

Fruit flies often are used for chromosomal studies because they share 60 percent of their genes with humans, and it is unethical to cause genetic abnormalities in humans. Also, the process by which fly cells grow and divide are comparable with human cells.

To trigger telomere loss, the researchers inserted into the flies a gene from common baker's yeast. The gene makes an enzyme that breaks and rejoins DNA. When they turned on the enzyme, it led to the loss of a single telomere in each affected fruit fly cell.

The researchers then looked at what happened to the cells that lost a telomere.

"When we looked to see what happens to cells [those lacking a telomere], we found that most died which is good because those that didn't die accumulated abnormal chromosomes, which is characteristic of cancer cells," Golic explains.

Next, they repeated the experiment using flies in which p53, Chk1 or Chk2 were mutated thus crippling cells' ability to commit suicide. The net effect of crippling the cell suicide genes and then damaging the chromosomes was to allow more damaged chromosomes to survive instead of committing suicide.

In a normal fly, when a telomere is lost, only 10 percent to 20 percent of cells with such damage survive, with the rest killing themselves. But in flies whose suicide genes were crippled, up to 75 percent of cells survived despite lacking a telomere.

"Cells containing chromosomes with broken ends turn on a signal and Chk2 gets activated, and then that activates p53 which eventually leads to cell death," Golic says. "Chk1 also becomes activated and eventually activates p53."

Titen adds: "Chk1 and Chk2 were not previously known to be involved in cell death due to loss of a telomere."

The researchers found that if a damaged cell avoids suicide due to p53, Chk1 or Chk2, there is another way it can kill itself and avoid starting down the road to cancer.

This occurs when the damaged cell divides, and its progeny have the wrong number of chromosomes. The resulting genetic imbalance can cause cell suicide. Thus, telomere loss also is linked to this alternative form of cell suicide. The study shows for the first time that this type of cell death which doesn't use p53 is caused by gaining or losing copies of other important genes, Golic says.

Cells that bypass all of the protective suicide measures divide multiple times, accumulating more and more chromosomal abnormalities. In humans, such cells are likely to develop into cancer cells.


'/>"/>

Contact: Lee Siegel
leesiegel@ucomm.utah.edu
801-581-8993
University of Utah
Source:Eurekalert  

Related biology news :

1. NSF funds new Center for the Physics of Living Cells at Illinois
2. Jefferson scientists deliver toxic genes to effectively kill pancreatic cancer cells
3. Pittsburgh researchers identify source of multipotent stem cells with broad regenerative potential
4. St. Jude study gives new insights into how cells accessorize their proteins
5. UNC scientists turn human skin cells into insulin-producing cells
6. Colorful spy tactics track live cells supporting cancerous tumors
7. Flatworm helps researchers study stem cells and cancer
8. Viral magic bullet targets cancer cells with help of new compound
9. Stem cells may solve mystery of early pregnancy breast cancer protection
10. Embryonic stem cells might help reduce transplantation rejection
11. Scientists isolate cancer stem cells
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
When cells go bad
(Date:11/14/2016)... 14, 2016  xG Technology, Inc. ("xG" or the ... wireless communications for use in challenging operating environments, announced ... 2016. Management will hold a conference call to discuss ... Eastern Time (details below). Key Recent Accomplishments ... million binding agreement to acquire Vislink Communication Systems. The ...
(Date:6/22/2016)... LOS ANGELES , June 22, 2016 ... of identity management and verification solutions, has ... cutting edge software solutions for Visitor Management, ... ® provides products that add functional ... The partnership provides corporations and venues with ...
(Date:6/16/2016)... , June 16, 2016 ... is expected to reach USD 1.83 billion by ... View Research, Inc. Technological proliferation and increasing demand ... are expected to drive the market growth. ... The development of advanced multimodal techniques ...
Breaking Biology News(10 mins):
(Date:12/6/2016)... Dec. 6, 2016  SRI International has been ... from the National Institutes of Health,s National Institute ... of AIDS (NIAID-DAIDS) to support the manufacturing and ... (PreP) agents. Under the seven-year contract, SRI will ... services for candidate HIV-prevention products that emerge from ...
(Date:12/5/2016)... -- Axovant Sciences Ltd. (NYSE: AXON ), ... of dementia, today announced that data on the investigational ... will be presented at the 2016 Clinical Trials in ... in San Diego . Intepirdine presentations ... complex measures of activities of daily living (ADLs) and ...
(Date:12/5/2016)... ... December 05, 2016 , ... In anticipation of AxioMed’s exclusive ... production, company President, Jake Lubinski will be traveling to Germany on December 6th. ... Cologne and Karlsruhe to discuss the benefits of a viscoelastic total disc replacement. ...
(Date:12/5/2016)... , Dec. 5, 2016 NxGen MDx announced today that ... the test in house, we,ve been able to improve customer service through ... patients," says Alan Mack , CEO of NxGen MDx. ... , , A ... volume has led to more job opportunities at the Grand Rapid headquarters. ...
Breaking Biology Technology: