Navigation Links
When It Comes To Genetic Code, Researchers Prove Optimum Isn't Always Best

COLLEGE STATION, Texas, Feb. 18, 2013 /PRNewswire-USNewswire/ -- Imagine two steel springs identical in look and composition but that perform differently because each was tempered at a different rate.


A team of researchers including a Texas A&M University molecular biologist has shown that concept — that the speed of creation affects performance — applies to how a protein they studied impacts an organism's circadian clock function. This discovery provides new insights into the significance of the genetic code for controlling the rates at which critically important proteins are synthesized, and could lead to better understanding of cancers and other diseases.

"Living organisms' inner clocks are like Swiss watches with precisely manufactured spring mechanisms," said Matthew Sachs , a professor in the Texas A&M Department of Biology. "For example, if you fast-temper a critical spring, the watch may be unable to keep time, as opposed to slow-tempering it. It's not just about the composition of the components, such as which alloy is used. It's about the manner in which the components are made. Our research says the genetic code is important for determining both composition and fabrication rate for a central component of the circadian clock, and that the fabrication rate also is critical. And that's essentially a discovery."

The research was selected for Advanced Online Publication (AOP) in the prestigious journal "Nature." To read the complete paper, go to

The team, which is led by Yi Liu , a researcher in the Department of Physiology at the University of Texas Southwestern Medical Center, was perplexed when it found a paradoxical result years ago: that optimizing the use of codons (a sequence of three nucleotides that form a unit of genetic code in a DNA or RNA molecule) specifying an essential biological clock component actually abolished the organism's circadian rhythms.

The group's research indicates that the protein in the fungal genus Neurospora they studied, frequency, performs better when the genetic code specifying it has non-optimal codon usage, as is normally found. However, when the genetic code is deliberately altered so that codon usage is optimized, clock function is lost. The reason for this is that non-optimal codon usage slows translation of the genetic code into protein, allotting the frequency protein the necessary time to achieve its optimal protein structure. The team's results also demonstrate that genetic codons do more than simply determine the amino acid sequence of a protein as previously thought: They also affect how much protein can be made as well as the functional quality of that protein.

"We found that less is more, in many cases," Liu said.

Because many genetic diseases are the result of improperly functioning proteins, Sachs says knowledge about how proteins are made and why they have impaired functions is critical to understanding almost all diseases.

"Understanding gene expression is crucial for understanding cancer and other diseases, because ultimately many of these processes involve either mutations of genes or altered expression of genes," said Sachs, who was asked by Liu to help on the research because of his translational expertise in Neurospora.

In addition to Liu and Sachs, the paper's authors include Mian Zhou , Jinhu Guo , Joonseok Cha and Michael Chae , all from the Department of Physiology at UT Southwestern Medical Center; She Chen from the National Institute of Biological Sciences in Beijing; and Jose M. Barral from the Departments of Neuroscience and Cell Biology and Biochemistry and Molecular Biology at UT Medical Branch in Galveston.

To learn more about Liu and his research, go to

For more on Sachs and his research, visit

More news about Texas A&M University, go to

Follow us on Twitter at

SOURCE Texas A&M University
Copyright©2012 PR Newswire.
All rights reserved

Related biology news :

1. AGU: Gasoline worse than diesel when it comes to some types of air pollution
2. When your ship comes in
3. 15-year study: When it comes to creating wetlands, Mother Nature is in charge
4. Researchers uncover molecular pathway through which common yeast becomes fungal pathogen
5. From scourge to saint: E. coli bacteria becomes a factory - to make cheaper, faster pharmaceuticals
6. Early detection techniques offer hope for improved outcomes in lung cancer patients
7. Freeing loggerhead turtles comes at a price
8. UGA study finds theres not always safety in numbers when it comes to extinction risk
9. EMBO welcomes 55 leading life scientists as members
10. How one strain of MRSA becomes resistant to last-line antibiotic
11. Study finds voter genetics may predict election outcomes
Post Your Comments:
(Date:11/12/2015)...   Growing need for low-cost, easy to ... paving the way for use of biochemical sensors ... in clinical, agricultural, environmental, food and defense applications. ... medical applications, however, their adoption is increasing in ... emphasis on improving product quality and growing need ...
(Date:11/9/2015)... Calif. , Nov. 9, 2015  Synaptics Inc. ... interface solutions, today announced broader entry into the automotive ... solutions that match the pace of consumer electronics human ... biometric sensors are ideal for the automotive industry and ... Europe , ...
(Date:10/29/2015)... 2015 Daon, a global leader in mobile ... a new version of its IdentityX Platform , ... America have already installed IdentityX v4.0 and ... FIDO UAF certified server component as an ... FIDO features. These customers include some of the largest ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... Malaysia , Nov. 24, 2015  Asia-Pacific ... contract research organisation (CRO) market. The trend of ... in lower margins but higher volume share for ... capacity and scale, however, margins in the CRO ... Organisation (CRO) Market ( ), finds ...
(Date:11/24/2015)... 2015 Cepheid (NASDAQ: CPHD ) today ... following conference, and invited investors to participate via webcast. ...      Tuesday, December 1, 2015 at 11.00 a.m. Eastern Time ...      Tuesday, December 1, 2015 at 11.00 a.m. Eastern Time ... New York, NY      Tuesday, December 1, 2015 ...
(Date:11/24/2015)... /CNW/ - iCo Therapeutics ("iCo" or "the Company") (TSX-V: ... the quarter ended September 30, 2015. Amounts, unless ... presented under International Financial Reporting Standards ("IFRS"). ... Andrew Rae , President & CEO of ... only value enriching for this clinical program, but ...
(Date:11/24/2015)... ... 2015 , ... International Society for Pharmaceutical Engineering (ISPE) closed ... events for pharmaceutical manufacturing: 2015 Annual Meeting. The conference took place in Philadelphia, ... number of attendees in more than a decade. , “The 2015 Annual ...
Breaking Biology Technology: