Navigation Links
Water and sunlight the formula for sustainable fuel
Date:8/21/2014

An Australian National University (ANU) team has successfully replicated one of the crucial steps in photosynthesis, opening the way for biological systems powered by sunlight which could manufacture hydrogen as a fuel.

"Water is abundant and so is sunlight. It is an exciting prospect to use them to create hydrogen, and do it cheaply and safely," said Dr Kastoori Hingorani, from the ARC Centre of Excellence for Translational Photosynthesis in the ANU Research School of Biology.

Hydrogen offers potential as a zero-carbon replacement for petroleum products, and is already used for launching space craft. However, until this work, the way that plants produce hydrogen by splitting water has been poorly understood.

The team created a protein which, when exposed to light, displays the electrical heartbeat that is the key to photosynthesis.

The system uses a naturally-occurring protein and does not need batteries or expensive metals, meaning it could be affordable in developing countries, Dr Hingorani said.

Co-researcher Professor Ron Pace said the research opened up new possibilities for manufacturing hydrogen as a cheap and clean source of fuel.

"This is the first time we have replicated the primary capture of energy from sunlight," Professor Pace said.

"It's the beginning of a whole suite of possibilities, such as creating a highly efficient fuel, or to trapping atmospheric carbon."

Professor Pace said large amounts of hydrogen fuel produced by artificial photosynthesis could transform the economy.

"That carbon-free cycle is essentially indefinitely sustainable. Sunlight is extraordinarily abundant, water is everywhere the raw materials we need to make the fuel. And at the end of the usage cycle it goes back to water," he said.

The team modified a much-researched and ubiquitous protein, Ferritin, which is present in almost all living organisms.

Ferritin's usual role is to store iron, but the team removed the iron and replaced it with the abundant metal, manganese, to closely resemble the water splitting site in photosynthesis.

The protein also binds a haem group, which the researchers replaced with a light-sensitive pigment, Zinc Chlorin.

When they shone light onto the modified ferritin, there was a clear indication of charge transfer just like in natural photosynthesis.

The possibilities inspired visionary researcher Associate Professor Warwick Hillier, who led the research group until his death from brain cancer, earlier this year.

"Associate Professor Hillier imagined modifying E. coli so that it expresses the gene to create ready-made artificial photosynthetic proteins. It would be a self-replicating system all you need to do is shine light on it," Dr Hingorani said.


'/>"/>

Contact: Dr. Kastoori Hingorani
kastoori.hingorani@anu.edu.au
61-415-575-278
Australian National University
Source:Eurekalert  

Related biology news :

1. Ozone treated water v. lethal microbial material
2. Unexpected crustacean diversity discovered in northern freshwater ecosystems
3. New methods for better purification of wastewater
4. Costs for changing pollution criteria in Florida waters likely to exceed EPA estimates
5. Current water resources in Europe and Africa
6. UC research: Tracking Lake Erie water snake in fight against invasive fish
7. Study confirms oil from Deepwater Horizon disaster entered food chain in the Gulf of Mexico
8. Specialization for underwater hearing by the tympanic middle ear of the turtle
9. Study by Haverford College professor reveals unprecedented impact of Deepwater Horizon on deep ocean
10. Increasing water scarcity in Californias Bay-Delta will necessitate trade-offs; hard decisions needed to balance various environmental risks
11. Scientists study the catalytic reactions used by plants to split oxygen from water
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Water and sunlight the formula for sustainable fuel
(Date:11/24/2016)... -- Cercacor today introduced Ember TM Sport Premium ... measure hemoglobin, Oxygen Content, Oxygen Saturation, Perfusion Index, ... approximately 30 seconds. Smaller than a smartphone, using only ... key data about their bodies to help monitor these ... Hemoglobin carries oxygen to muscles. When hemoglobin and ...
(Date:11/17/2016)... 17, 2016 Global Market Watch: Primarily ... Banks, Population-Based Banks and Academics) market is to witness a ... Biobanks shows the highest Compounded Annual Growth Rate (CAGR) of ... during the analysis period 2014-2020. North America ... followed by Europe at 9.56% respectively. ...
(Date:11/14/2016)... 14, 2016  xG Technology, Inc. ("xG" or the ... wireless communications for use in challenging operating environments, announced ... 2016. Management will hold a conference call to discuss ... Eastern Time (details below). Key Recent Accomplishments ... million binding agreement to acquire Vislink Communication Systems. The ...
Breaking Biology News(10 mins):
(Date:12/2/2016)... ... 01, 2016 , ... ACEA Biosciences, Inc. announced today that it will be ... at the World Conference on Lung Cancer 2016, taking place in Vienna, Austria December ... clinical trials for AC0010 in patients with advanced non-small cell lung cancer harboring the ...
(Date:12/2/2016)... ... 2016 , ... DrugDev believes the only way to achieve real ... All three tenets were on display at the 2nd Annual DrugDev User Summit (hosted ... CRO and site organizations to discuss innovation and the future of clinical research. ...
(Date:12/2/2016)... PUNE, India , December 2, 2016 ... Billion by 2021, growing at a CAGR of 7.3% during the ... segment while hospitals and diagnostic laboratories segment accounted for the largest ... ... Complete report on global immunohistochemistry (IHC) market spread across 225 ...
(Date:11/30/2016)... 2016 /PRNewswire/ - Portage Biotech Inc. ("Portage" or "the ... excited to announce the formation of EyGen, Ltd. ... ophthalmology assets through proof of concept. EyGen,s lead ... Portage Pharmaceuticals Limited and being developed for topical ... anterior segment diseases. This agent has the potential ...
Breaking Biology Technology: