Navigation Links
Water, fair and foul
Date:4/21/2010

Does your drinking water smell foul, or are you worried that chemicals might be damaging your family's health? Water treatment facilities currently use chlorine that produces carcinogenic by-products to keep your tapwater clean, but Tel Aviv University scientists have determined that ultra-violet (UV) light might be a better solution.

Dr. Hadas Mamane of Tel Aviv University's Porter School of Environmental Science and Faculty of Engineering, Prof. Eliora Ron of TAU's George S. Wise Faculty of Life Sciences and their doctoral student Anat Lakretz of TAU's School of Mechanical Engineering have recently determined the optimal UV wavelength for keeping water clean of microorganisms. Their approach could be used by water treatment plants as well as large-scale desalination facilities to destroy health-threatening microorganisms and make these facilities more efficient.

"UV light irradiation is being increasingly applied as a primary process for water disinfection," says Lakretz. "In our recent study, we've shown how this treatment can be optimized to kill free-swimming bacteria in the water the kinds that also stick inside water distribution pipes and clog filters in desalination plants by producing bacterial biofilms."

This undesired "stickiness" of bacteria to surfaces is called "bio-fouling," which costs taxpayers and governments billions of dollars each year. "No one should be drinking microorganisms in their water. In addition, when microorganisms get stuck in the pores of the membranes of filters, they create serious problems," says Lakretz.

Not all UV light is created equal

Irradiation could be used as a pre-treatment to inactivate suspended microorganisms in water, with the secondary goal of preventing bio-fouling. In their study, reported in the journal Biofouling, the researchers looked at targeted UV light wavelengths on the bacteria Pseudomonas aeruginosa, commonly found in drinking water.

The TAU researchers investigated UV wavelengths within between the 220-280 nanometre (nm) scale, and found that any wavelength between 254 and 270 nm effectively cleaned the water. Those in the same region were also best for keeping membranes clear of bacterial build-up in desalination plants, they reported. Special lamps that emit a multi-wavelength UV spectrum ― more advanced than the single-wavelength UV lamps found in home water systems ― were used.

The UV "zap" also prevented bacterial re-growth in the water after UV inactivation. "The best way to control and kill these micro-organisms was to damage their DNA," says Lakretz. "The damage that the UV light causes has no known negative effect on the water," she adds.

In addition, the prevention of biofilm formation by bacteria was UV dose-dependent. The researchers reported less bio-fouling when a bigger dose of UV light was applied to the water around the film.

A light to save lives

The approach is even more helpful against parasites that aren't adversely affected by chlorine treatment, such as Giarrdia and Cryptosporidium, two harmful parasites that cause severe diarrhea and can lead to death. Children, the elderly and those in developing nations are particularly vulnerable. "Sewage leakage into water supplies poses a big problem in terms of bacterial contamination, and is something UV light could remediate," says Lakretz.

Small amounts of chorine or other oxidants will still be necessary to make sure that residual bacteria don't enter the water further along the distribution pipeline. But Lakretz says this new approach to disinfecting water while controlling biofouling can also reduce the amount of carcinogenic by-products that chlorine produces.


'/>"/>

Contact: George Hunka
ghunka@aftau.org
212-742-9070
American Friends of Tel Aviv University
Source:Eurekalert  

Related biology news :

1. United Water, in partnership with Stevens, wins Management Innovation Award
2. New Raider Amethyst prairie verbena: conserves water, drought-tolerant
3. HARDY rice: less water, more food
4. HARDY rice: less water, more food
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Water, fair and foul
(Date:2/13/2017)... , Feb. 13, 2017  RSA Conference -- RSA, ... that is designed to enhance fraud detection and ... in the RSA Fraud & Risk Intelligence Suite. ... to leverage additional insights from internal and external ... better protect their customers from targeted cybercrime attacks. ...
(Date:2/10/2017)... -- Research and Markets has announced the ... Scientific and Commercial Aspects" to their offering. ... Biomarkers play ... therapy for selection of treatment as well for monitoring the ... disease in modern medicine. Biochip/microarray technologies and next generation sequencing ...
(Date:2/8/2017)... YORK , Feb. 8, 2017 About ... individual,s voice to match it against a stored ... such as pitch, cadence, and tone are compared ... require minimal hardware installation, as most PCs already ... for different transactions. Voice recognition biometrics are most ...
Breaking Biology News(10 mins):
(Date:3/22/2017)... ... March 21, 2017 , ... Proper glycosylation is ... the desired increase and/or decrease in antibody-dependent cellular cytotoxicity or complement-dependent cytotoxicity, there ... therapeutic antibodies. , To meet this demand, the team at SCIEX has ...
(Date:3/22/2017)... ... March 21, 2017 , ... Aqua Design Innovations ... goal and raising over $30,000 in the first 40 minutes of crowdfunding. EcoQube ... herbs fast, easy, and affordably, anywhere. , “Simply add fertilized water and in ...
(Date:3/22/2017)... ... March 21, 2017 , ... ... Quantum peristaltic pump with patented ReNu single-use (SU) cartridge technology. Engineered by ... high-pressure feed pumps in SU tangential flow filtration (TFF), virus filtration (VF) ...
(Date:3/22/2017)... WI (PRWEB) , ... March 22, 2017 , ... The ... scientific research agencies as outlined in the Administration’s recently published fiscal year 2018 budget ... the National Institutes of Health (NIH) by $5.8 billion or roughly 20% of its ...
Breaking Biology Technology: