Navigation Links
Water, fair and foul
Date:4/21/2010

Does your drinking water smell foul, or are you worried that chemicals might be damaging your family's health? Water treatment facilities currently use chlorine that produces carcinogenic by-products to keep your tapwater clean, but Tel Aviv University scientists have determined that ultra-violet (UV) light might be a better solution.

Dr. Hadas Mamane of Tel Aviv University's Porter School of Environmental Science and Faculty of Engineering, Prof. Eliora Ron of TAU's George S. Wise Faculty of Life Sciences and their doctoral student Anat Lakretz of TAU's School of Mechanical Engineering have recently determined the optimal UV wavelength for keeping water clean of microorganisms. Their approach could be used by water treatment plants as well as large-scale desalination facilities to destroy health-threatening microorganisms and make these facilities more efficient.

"UV light irradiation is being increasingly applied as a primary process for water disinfection," says Lakretz. "In our recent study, we've shown how this treatment can be optimized to kill free-swimming bacteria in the water the kinds that also stick inside water distribution pipes and clog filters in desalination plants by producing bacterial biofilms."

This undesired "stickiness" of bacteria to surfaces is called "bio-fouling," which costs taxpayers and governments billions of dollars each year. "No one should be drinking microorganisms in their water. In addition, when microorganisms get stuck in the pores of the membranes of filters, they create serious problems," says Lakretz.

Not all UV light is created equal

Irradiation could be used as a pre-treatment to inactivate suspended microorganisms in water, with the secondary goal of preventing bio-fouling. In their study, reported in the journal Biofouling, the researchers looked at targeted UV light wavelengths on the bacteria Pseudomonas aeruginosa, commonly found in drinking water.

The TAU researchers investigated UV wavelengths within between the 220-280 nanometre (nm) scale, and found that any wavelength between 254 and 270 nm effectively cleaned the water. Those in the same region were also best for keeping membranes clear of bacterial build-up in desalination plants, they reported. Special lamps that emit a multi-wavelength UV spectrum ― more advanced than the single-wavelength UV lamps found in home water systems ― were used.

The UV "zap" also prevented bacterial re-growth in the water after UV inactivation. "The best way to control and kill these micro-organisms was to damage their DNA," says Lakretz. "The damage that the UV light causes has no known negative effect on the water," she adds.

In addition, the prevention of biofilm formation by bacteria was UV dose-dependent. The researchers reported less bio-fouling when a bigger dose of UV light was applied to the water around the film.

A light to save lives

The approach is even more helpful against parasites that aren't adversely affected by chlorine treatment, such as Giarrdia and Cryptosporidium, two harmful parasites that cause severe diarrhea and can lead to death. Children, the elderly and those in developing nations are particularly vulnerable. "Sewage leakage into water supplies poses a big problem in terms of bacterial contamination, and is something UV light could remediate," says Lakretz.

Small amounts of chorine or other oxidants will still be necessary to make sure that residual bacteria don't enter the water further along the distribution pipeline. But Lakretz says this new approach to disinfecting water while controlling biofouling can also reduce the amount of carcinogenic by-products that chlorine produces.


'/>"/>

Contact: George Hunka
ghunka@aftau.org
212-742-9070
American Friends of Tel Aviv University
Source:Eurekalert  

Related biology news :

1. United Water, in partnership with Stevens, wins Management Innovation Award
2. New Raider Amethyst prairie verbena: conserves water, drought-tolerant
3. HARDY rice: less water, more food
4. HARDY rice: less water, more food
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Water, fair and foul
(Date:8/15/2017)...   ivWatch LLC , a medical device company focused on ... receipt of its ISO 13485 Certification, the global standard for medical ... Standardization (ISO®). ... Continuous Monitoring device for the early detection of IV infiltrations. ... "This is an important milestone for ivWatch, as ...
(Date:5/23/2017)... , May 23, 2017  Hunova, the first robotic gym for the ... been officially launched in Genoa, Italy . The first ... and the USA . The technology was developed ... market by the IIT spin-off Movendo Technology thanks to a 10 million ... News Release, please click: ...
(Date:4/19/2017)... , April 19, 2017 ... its vendor landscape is marked by the presence of ... is however held by five major players - 3M ... these companies accounted for nearly 61% of the global ... leading companies in the global military biometrics market boast ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... ... October 12, 2017 , ... DuPont Pioneer and recently formed ... entered into a multiyear collaboration to identify and characterize novel CRISPR-Cas nucleases. The ... gene editing across all applications. , Under the terms of the agreement, Pioneer ...
(Date:10/12/2017)... (PRWEB) , ... October 12, 2017 , ... ... Surgical Wound Market with the addition of its newest module, US Hemostats & ... market for thrombin hemostats, absorbable hemostats, fibrin sealants, synthetic sealants and biologic sealants ...
(Date:10/12/2017)... ... October 12, 2017 , ... ... analysis platform specifically designed for life science researchers to analyze and interpret ... Rosalind Franklin, who made a major contribution to the discovery of the ...
(Date:10/11/2017)... ... October 11, 2017 , ... The ... endogenous context, enabling overexpression experiments and avoiding the use of exogenous expression plasmids. ... is transformative for performing systematic gain-of-function studies. , This complement to loss-of-function ...
Breaking Biology Technology: