Navigation Links
Watching molecules grow into microtubes
Date:2/22/2013

Newswise Sometimes the best discoveries come by accident.

A team of researchers at Washington University in St. Louis, headed by Srikanth Singamaneni, PhD, assistant professor of mechanical engineering & materials science, unexpectedly found the mechanism by which tiny single molecules spontaneously grow into centimeter-long microtubes by leaving a dish for a different experiment in the refrigerator.

Once Singamaneni and his research team, including Abdennour Abbas, PhD, a former postdoctoral researcher at Washington University, Andrew Brimer, a senior undergraduate majoring in mechanical engineering, and Limei Tian, a fourth-year graduate student, saw that these molecules had become microtubes, they set out to find out how.

To do so, they spent about six months investigating the process at various length scales (nano to micro) using various microscopy and spectroscopy techniques.

The results were published in the journal Small.

"What we showed was that we can actually watch the self-assembly of small molecules across multiple length scales, and for the first time, stitched these length scales to show the complete picture," Singamaneni says. "This hierarchical self-organization of molecular building blocks is unprecedented since it is initiated from a single molecular crystal and is driven by vesiclular dynamics in water."

Self-assembly, a process in which a disordered collection of components arrange themselves into an ordered structure, is of growing interest as a new paradigm in creating micro- and nanoscale structures and functional systems and subsystems. This novel approach of making nano- and microstructures and devices is expected to have numerous applications in electronics, optics and biomedical applications.

The team used small molecules p-aminothiophenol (p-ATP) or p-aminophenyl disulfide added to water with a small amount of ethanol. The molecules first assembled into nanovesicles then into microvesicles and eventually into centimeter-long microtubules. The vesicles stick onto the surface of the tube, walk along the surface and attach themselves, causing the tube to grow longer and wider. The entire process takes mere seconds, with the growth rate of 20 microns per second.

"While it was exciting to watch the self-assembly of these molecules, we are even more excited about the implications of the self-assembly of such small molecules," Singamaneni says. "This mechanism can be used to load the vesicles with the desired macromolecules, such as proteins, antibodies or antibiotics, for example, and build microtubes with a biological function."

Singamaneni says his research team collaborated with researchers in Singapore who are experts in molecular crystals, as well as with colleagues in the Department of Chemistry.

"We hope that once we can co-assemble some functional nanostructures along with these small molecules, then these molecular assemblies can have applications in biological sensors and chemical sensors," Singamaneni says.


'/>"/>

Contact: Neil Schoenherr
nschoenherr@wustl.edu
314-935-5235
Washington University in St. Louis
Source:Eurekalert

Related biology news :

1. Watching the developing brain, scientists glean clues on neurological disorder
2. Watching the cogwheels of the biological clock in living cells
3. Molecules assemble in water, hint at origins of life
4. How our cells cope with toxic small molecules
5. How computers push on the molecules they simulate
6. Dance of water molecules turns fire-colored beetles into antifreeze artists
7. A class of RNA molecules protects germ cells from damage, Penn vet researchers show
8. Researchers develop new stamping process to pattern biomolecules at high resolution
9. Nano-velcro clasps heavy metal molecules in its grips
10. Weighing molecules 1 at a time
11. New model gives hands-on help for learning the secrets of molecules
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/13/2016)... 13, 2016  IMPOWER physicians supporting Medicaid patients in ... new clinical standard in telehealth thanks to a new ... higi platform, IMPOWER patients can routinely track key health ... mass index, and, when they opt in, share them ... to a local retail location at no cost. By ...
(Date:3/29/2016)... 29, 2016 LegacyXChange, Inc. (OTC: ... and SelectaDNA/CSI Protect are pleased to announce our successful ... a variety of writing instruments, ensuring athletes signatures against ... collectibles from athletes on LegacyXChange will be assured of ... DNA. Bill Bollander , CEO states, ...
(Date:3/22/2016)... and SANDY, Utah , ... which operates the highest sample volume laboratory in ... Genomics and UNIConnect, leaders in clinical sequencing informatics and ... launch of a project to establish the informatics infrastructure ... NSO has been contracted by the Ontario ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... --  EpiBiome , a precision microbiome engineering company, today ... from Silicon Valley Bank (SVB). The financing will allow ... drug development efforts, as well as purchase additional lab ... been an incredible strategic partner to us – one ... provide," said Dr. Aeron Tynes Hammack , EpiBiome,s ...
(Date:6/23/2016)... ... June 23, 2016 , ... In a new case report published ... how a patient who developed lymphedema after being treated for breast cancer benefitted from ... the paradigm for dealing with this debilitating, frequent side effect of cancer treatment. ...
(Date:6/23/2016)... 23, 2016 Andrew ... http://doi.org/10.17925/OHR.2016.12.01.22 Published recently in ... journal from touchONCOLOGY, Andrew D Zelenetz , ... cancer care is placing an increasing burden on ... biologic therapies. With the patents on many biologics ...
(Date:6/23/2016)... Prairie, WI (PRWEB) , ... June 23, 2016 ... ... consultancy focused on quality, regulatory and technical consulting, provides a free webinar ... is presented on July 13, 2016 at 12pm CT at no charge. , ...
Breaking Biology Technology: