Navigation Links
Watching molecules grow into microtubes
Date:2/22/2013

Newswise Sometimes the best discoveries come by accident.

A team of researchers at Washington University in St. Louis, headed by Srikanth Singamaneni, PhD, assistant professor of mechanical engineering & materials science, unexpectedly found the mechanism by which tiny single molecules spontaneously grow into centimeter-long microtubes by leaving a dish for a different experiment in the refrigerator.

Once Singamaneni and his research team, including Abdennour Abbas, PhD, a former postdoctoral researcher at Washington University, Andrew Brimer, a senior undergraduate majoring in mechanical engineering, and Limei Tian, a fourth-year graduate student, saw that these molecules had become microtubes, they set out to find out how.

To do so, they spent about six months investigating the process at various length scales (nano to micro) using various microscopy and spectroscopy techniques.

The results were published in the journal Small.

"What we showed was that we can actually watch the self-assembly of small molecules across multiple length scales, and for the first time, stitched these length scales to show the complete picture," Singamaneni says. "This hierarchical self-organization of molecular building blocks is unprecedented since it is initiated from a single molecular crystal and is driven by vesiclular dynamics in water."

Self-assembly, a process in which a disordered collection of components arrange themselves into an ordered structure, is of growing interest as a new paradigm in creating micro- and nanoscale structures and functional systems and subsystems. This novel approach of making nano- and microstructures and devices is expected to have numerous applications in electronics, optics and biomedical applications.

The team used small molecules p-aminothiophenol (p-ATP) or p-aminophenyl disulfide added to water with a small amount of ethanol. The molecules first assembled into nanovesicles then into microvesicles and eventually into centimeter-long microtubules. The vesicles stick onto the surface of the tube, walk along the surface and attach themselves, causing the tube to grow longer and wider. The entire process takes mere seconds, with the growth rate of 20 microns per second.

"While it was exciting to watch the self-assembly of these molecules, we are even more excited about the implications of the self-assembly of such small molecules," Singamaneni says. "This mechanism can be used to load the vesicles with the desired macromolecules, such as proteins, antibodies or antibiotics, for example, and build microtubes with a biological function."

Singamaneni says his research team collaborated with researchers in Singapore who are experts in molecular crystals, as well as with colleagues in the Department of Chemistry.

"We hope that once we can co-assemble some functional nanostructures along with these small molecules, then these molecular assemblies can have applications in biological sensors and chemical sensors," Singamaneni says.


'/>"/>

Contact: Neil Schoenherr
nschoenherr@wustl.edu
314-935-5235
Washington University in St. Louis
Source:Eurekalert

Related biology news :

1. Watching the developing brain, scientists glean clues on neurological disorder
2. Watching the cogwheels of the biological clock in living cells
3. Molecules assemble in water, hint at origins of life
4. How our cells cope with toxic small molecules
5. How computers push on the molecules they simulate
6. Dance of water molecules turns fire-colored beetles into antifreeze artists
7. A class of RNA molecules protects germ cells from damage, Penn vet researchers show
8. Researchers develop new stamping process to pattern biomolecules at high resolution
9. Nano-velcro clasps heavy metal molecules in its grips
10. Weighing molecules 1 at a time
11. New model gives hands-on help for learning the secrets of molecules
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/21/2016)... VANCOUVER, British Columbia , June 21, 2016 ... been appointed to the new role of principal ... has been named the director of customer development. ... , NuData,s chief technical officer. The moves reflect ... development teams in response to high customer demand ...
(Date:6/9/2016)... , June 9, 2016 ... deploy Teleste,s video security solution to ensure the safety of ... during the major tournament Teleste, an ... systems and services, announced today that its video security solution ... to back up public safety across the country. The ...
(Date:6/2/2016)... Perimeter Surveillance & Detection Systems, Biometrics & ... & Other Service  The latest report from ... of the global Border Security market . Visiongain ... billion in 2016. Now: In November 2015 ... and hardware technologies for advanced video surveillance. ...
Breaking Biology News(10 mins):
(Date:12/5/2016)... N.J. , Dec. 5, 2016  Eisai ... 3 open-label two-year study of rufinamide, which were ... American Epilepsy Society (AES) held from December 2-6 ... of final two-year safety, tolerability and cognitive data ... rufinamide experienced similar safety and tolerability profiles, cognitive ...
(Date:12/4/2016)... ... December 03, 2016 , ... Microbial genomics ... impact grant award has been made to Dr. Renato Polimanti of Yale University ... on the oral microbiome. Grant proposals have been vetted by the company’s scientific ...
(Date:12/2/2016)... COLD SPRING HARBOR, N.Y. , Dec. 2, 2016 /PRNewswire/ ... Spring Harbor Laboratory,s (CSHL) 11th Double Helix Medals dinner ( DHMD ). ... History (AMNH) in New York City ... Vagelos for their contributions, respectively, to health and medicine ... honored Muhammad Ali in 2006, the event has ...
(Date:12/2/2016)... , Dec 2, 2016 Research ... report "Nanobiotechnology Applications, Markets and Companies" to their ... , , ... nanobiotechnology by the pharmaceutical and biotechnology industries is anticipated. Nanotechnology ... from formulations for optimal delivery to diagnostic applications in clinical ...
Breaking Biology Technology: