Navigation Links
Wastewater produces electricity and desalinates water

A process that cleans wastewater and generates electricity can also remove 90 percent of salt from brackish water or seawater, according to an international team of researchers from China and the U.S.

Clean water for drinking, washing and industrial uses is a scarce resource in some parts of the world. Its availability in the future will be even more problematic. Many locations already desalinate water using either a reverse osmosis process -- one that pushes water under high pressure through membranes that allow water to pass but not salt -- or an electrodialysis process that uses electricity to draw salt ions out of water through a membrane. Both methods require large amounts of energy.

"Water desalination can be accomplished without electrical energy input or high water pressure by using a source of organic matter as the fuel to desalinate water," the researchers report in a recent online issue of Environmental Science and Technology.

"The big selling point is that it currently takes a lot of electricity to desalinate water and using the microbial desalination cells, we could actually desalinate water and produce electricity while removing organic material from wastewater," said Bruce Logan, Kappe Professor of Environmental Engineering, Penn State

The team modified a microbial fuel cell -- a device that uses naturally occurring bacteria to convert wastewater into clean water producing electricity -- so it could desalinate salty water.

"Our main intent was to show that using bacteria we can produce sufficient current to do this," said Logan. "However, it took 200 milliliters of an artificial wastewater -- acetic acid in water -- to desalinate 3 milliliters of salty water. This is not a practical system yet as it is not optimized, but it is proof of concept."

A typical microbial fuel cell consists of two chambers, one filled with wastewater or other nutrients and the other with water, each containing an electrode. Naturally occurring bacteria in the wastewater consume the organic material and produce electricity.

The researchers, who also included Xiaoxin Cao, Xia Huang, Peng Liang, Kang Xiao, Yinjun Zhou and Xiaoyuan Zhang, at Tsinghua University, Beijing, changed the microbial fuel cell by adding a third chamber between the two existing chambers and placing certain ion specific membranes -- membranes that allow either positive or negative ions through, but not both -- between the central chamber and the positive and negative electrodes. Salty water to be desalinated is placed in the central chamber.

Seawater contains about 35 grams of salt per liter and brackish water contains 5 grams per liter. Salt not only dissolves in water, it dissociates into positive and negative ions. When the bacteria in the cell consume the wastewater it releases charged ions -- protons -- into the water. These protons cannot pass the anion membrane, so negative ions move from the salty water into the wastewater chamber. At the other electrode protons are consumed, so positively charged ions move from the salty water to the other electrode chamber, desalinating the water in the middle chamber.

The desalination cell releases ions into the outer chambers that help to improve the efficiency of electricity generation compared to microbial fuel cells.

"When we try to use microbial fuel cells to generate electricity, the conductivity of the wastewater is very low," said Logan. "If we could add salt it would work better. Rather than just add in salt, however in places where brackish or salt water is already abundant, we could use the process to additionally desalinate salty water, clean the wastewater and dump it and the resulting salt back into the ocean."

Because the salt in the water helps the cell generate electricity, as the central chamber becomes less salty, the conductivity decreases and the desalination and electrical production decreases, which is why only 90 percent of the salt is removed. However, a 90 percent decrease in salt in seawater would produce water with 3.5 grams of salt per liter, which is less than brackish water. Brackish water would contain only 0.5 grams of salt per liter.

Another problem with the current cell is that as protons are produced at one electrode and consumed at the other electrode, these chambers become more acidic and alkaline. Mixing water from the two chambers together when they are discharged would once again produce neutral, salty water, so the acidity and alkalinity are not an environmental problem assuming the cleaned wastewater is dumped into brackish water or seawater. However, the bacteria that run the cell might have a problem living in highly acidic environments.

For this experiment, the researchers periodically added a pH buffer avoiding the acid problem, but this problem will need to be considered if the system is to produce reasonable amounts of desalinized water.


Contact: A'ndrea Elyse Messer
Penn State

Related biology news :

1. New method monitors critical bacteria in wastewater treatment
2. Commercial aquatic plants offer cost-effective method for treating wastewater
3. Researchers describe implausible chemistry that produces herbicidal compound
4. Obscure fungus produces diesel fuel components
5. Ethanol byproduct produces green results
6. New chemotherapy combo produces side effects, but no extra efficacy, in early breast cancer patients
7. New study shows Dermytol produces pronounced decrease in malignant melanoma tumor volume
8. New renewables to power 40 per cent of global electricity demand by 2050
9. California study shows shade trees reduce summertime electricity use
10. Cow power could generate electricity for millions
11. Carnegie Mellon researchers urge development of low carbon electricity
Post Your Comments:
Related Image:
Wastewater produces electricity and desalinates water
(Date:11/18/2015)... York , November 18, 2015 ... Research has published a new market report titled  Gesture ... Trends, and Forecast, 2015 - 2021. According to the report, ... 2014 and is anticipated to reach US$29.1 bn by ... 2021. North America dominated ...
(Date:11/17/2015)... , Nov. 17, 2015 Pressure BioSciences, ... in the development and sale of broadly enabling, pressure ... life sciences industry, today announced it has received gross ... $5 million Private Placement (the "Offering"), increasing the total ...  One or more additional closings are expected in the ...
(Date:11/12/2015)... --  Growing need for low-cost, easy to use, ... the way for use of biochemical sensors for ... clinical, agricultural, environmental, food and defense applications. Presently, ... applications, however, their adoption is increasing in agricultural, ... on improving product quality and growing need to ...
Breaking Biology News(10 mins):
(Date:11/30/2015)... , Nov. 30, 2015  HUYA Bioscience International, the ... pharmaceutical innovations, today announced it has signed ... Fund (KDDF) to foster collaboration between KDDF and HUYA ... commercialization of healthcare products for the global market. ... important source of new innovative preclinical and clinical stage ...
(Date:11/30/2015)... Florida and MAGDEBURG, Germany , ... of NeuroRehabilitation (ECNR) in Vienna, Austria ... 3rd European Congress of NeuroRehabilitation (ECNR) in ... --> NovaVision, a wholly owned subsidiary of Vycor ... European version of its Internet-delivered NovaVision Therapy Suite at the ...
(Date:11/30/2015)... Israel , Nov. 30, 2015 BrainStorm ... developer of adult stem cell technologies for neurodegenerative diseases, today ... been awarded an additional grant of approximately $735,000 from ... This grant, the second this year, brings the total awarded ... million (approximately NIS7 million).  ...
(Date:11/27/2015)... ... November 27, 2015 , ... Pittcon is pleased to ... presentations offered in symposia, oral sessions, workshops, awards, and posters. The core ... of applications such as, but not limited to, biotechnology, biomedical, drug discovery, environmental, ...
Breaking Biology Technology: