Navigation Links
WSU scientists find burglary-ring-like mechanism in lethal 'Contagion' virus
Date:12/16/2013

PULLMAN, Wash. - A team of scientists from Washington State University has discovered how one of the planet's most deadly known viruses employs burglary-ring-like teamwork to infiltrate the human cell.

Nipah virus is so menacing that the nation's top infectious disease experts served as consultants in the filmmaking of the 2011 medical thriller, "Contagion," which is based on a global Nipah outbreak.

The WSU researchers, led by virologist Hector Aguilar-Carreno, have found that two proteins on the surface of the virus communicate in a way similar to two skilled burglars with one casing the human cell while the other waits for a signal to launch the break-in. Their findings were recently published in the medical journal PLOS Pathogens. (Go to http://www.plospathogens.org/article/info%3Adoi%2F10.1371%2Fjournal.ppat.1003770;jsessionid=4D884A79CA91DD62B0CF925A8205C1B8).

"Our study provides the most complete picture of what happens after Nipah virus attaches itself to the surface of the human cell to gain entry," said Aguilar-Carreno of WSU's Paul G. Allen School for Global Animal Health. "This is important not only to our understanding of how Nipah is transmitted, but also for viruses of the same family that can cause serious human and animal diseases."

Those include measles, mumps, respiratory syncytial virus in humans and distemper in dogs, he said.

Invasion from inner space

Working with disabled Nipah microbes that can't cause infection, Aguilar-Carreno and his colleagues determined that two proteins act as forward scouts, with protein G sensing an opportunity to activate the break-and-enter and then signaling the go-ahead to protein F to start the fusion process.

This signal exchange is so efficient that it helps explain how a single, miniscule virus can launch full-blown disease, said Aguilar-Carreno.

"The virus is able to fuse its own membrane with the membrane of a healthy cell and then invade with its RNA. Once inside its cell host, Nipah multiplies by the thousands and the infection process begins," he said.

Flu-like, but worse

Nipah virus, identified 14 years ago during an epidemic in Malaysia, causes flu-like symptoms and convulsions due to swelling of the brain. Outbreaks of the virus inflict a high mortality rate, usually killing more humans than are spared.

Because the pathogen spreads from certain animals to humans and from person to person, the World Health Organization has identified it as a potential source of a global pandemic.

And it might start with a single cough.

As the movie "Contagion" portrays, the microbe is believed to have spread from the tropical fruit bat to pigs before making a leap to humans.

The disease hasn't been diagnosed outside remote areas of Southeast Asia. But the concern is that the pathogen could spread to other regions if an infected person travels on a plane or if the fruit bat - with its six-foot wing span - ventures farther in search of food and habitat. The virus doesn't sicken the bats; instead they are reservoir hosts.

Higher death tolls

"Since Nipah virus was identified, we've seen at least one outbreak each year, each resulting in a high percentage of deaths," said Aguilar-Carreno.

Most alarming is this year's outbreak in Bangladesh where the virus killed 21 of the 24 people diagnosed, according to that country's Institute of Epidemiology, Disease Control and Research. Victims' ages were 8 months to 60 years.

Whether the virus is becoming more deadly or improved surveillance is finding more cases, "it's too soon to know," said virologist Paul Rota of the U.S. Centers for Disease Control in Atlanta, which classifies the pathogen in the same hot-agent category as Ebola and smallpox.

Not only does the virus spread among different species, but there is no vaccine or treatment. And that's where Aguilar-Carreno's work comes in.

"Our study reveals the intricate steps that one Nipah virus undertakes in order to enter a 10,000-times-larger healthy cell," he said. "The more we understand about Nipah's molecular mechanics, the more likely scientists can develop a drug to block it from infecting."


'/>"/>

Contact: Hector Aguilar-Carreno
haguilar@vetmed.wsu.edu
509-335-4410
Washington State University
Source:Eurekalert  

Related biology news :

1. Stanford scientists develop gene therapy approach to grow blood vessels in ischemic limbs
2. Queens scientists seek vaccine for Pseudomonas infection
3. Scientists produce eye structures from human blood-derived stem cells
4. American Society of Plant Biologists honors early career women scientists
5. Brandeis scientists win prestigious prize for circadian rhythms research
6. Scientists discover new method of proton transfer
7. Salk scientists open new window into how cancers override cellular growth controls
8. WileyChina.com - Now Featuring Bespoke Pages for China’s Life Scientists
9. Scientists win $2 million to study new pathway in development and maintenance of lymphoma
10. UGA scientists reveal genetic mutation depicted in van Goghs sunflower paintings
11. Genetic mutation depicted in van Goghs sunflower paintings revealed by scientists
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
WSU scientists find burglary-ring-like mechanism in lethal 'Contagion' virus
(Date:6/3/2016)... June 3, 2016 ... Nepal hat ein ... hochsicherer geprägter Kennzeichen, einschließlich Personalisierung, Registrierung und ... der Produktion und Implementierung von Identitätsmanagementlösungen. Zahlreiche ... im Januar teilgenommen, aber Decatur wurde als ...
(Date:6/1/2016)... , June 1, 2016 ... in Election Administration and Criminal Identification to Boost Global ... a recently released TechSci Research report, " Global Biometrics ... Region, Competition Forecast and Opportunities, 2011 - 2021", the ... billion by 2021, on account of growing security concerns ...
(Date:5/12/2016)... 2016 WearablesResearch.com , a brand of ... results from the Q1 wave of its quarterly wearables ... consumers, receptivity to a program where they would receive ... insurance company. "We were surprised to see ... Michael LaColla , CEO of Troubadour Research, "primarily because ...
Breaking Biology News(10 mins):
(Date:6/24/2016)... , June 24, 2016 Epic Sciences ... detects cancers susceptible to PARP inhibitors by targeting ... cells (CTCs). The new test has already been ... in multiple cancer types. Over 230 ... damage response pathways, including PARP, ATM, ATR, DNA-PK ...
(Date:6/23/2016)... ... June 23, 2016 , ... ... announce the launch of their brand, UP4™ Probiotics, into Target stores nationwide. The ... is proud to add Target to its list of well-respected retailers. This list ...
(Date:6/23/2016)... -- Houston Methodist Willowbrook Hospital has signed a ... serve as their official health care provider. As ... provide sponsorship support, athletic training services, and most ... athletes and families. "We are excited ... to bring Houston Methodist quality services and programs ...
(Date:6/23/2016)... , June 23, 2016   EpiBiome , a ... $1 million in debt financing from Silicon Valley Bank ... automation and to advance its drug development efforts, as ... facility. "SVB has been an incredible strategic ... services a traditional bank would provide," said Dr. ...
Breaking Biology Technology: