Navigation Links
WHOI scientists/engineers partner with companies to market revolutionary new instruments

Woods Hole Oceanographic Institution (WHOI) researchers have partnered with two companies to build and market undersea technology developed at WHOI: the Imaging FlowCytobot, an automated underwater microscope, and BlueComm, an underwater communications system that uses light to provide wireless transmission of data, including video imagery, in real or near-real time.

WHOI biologists Robert Olson and Heidi Sosik, creators of the Imaging FlowCytobot, have licensed their instrument to Falmouth-based McLane Research Laboratories, which manufactures and sells a wide range of precision oceanographic instruments.

WHOI engineers Norman E. Farr and Jonathan Ware are partnering with U.K.-based underwater acoustics and communications company Sonardyne International Ltd., to create the joint venture, Lumasys.

The Imaging FlowCytobot detects, photographs, and collects data on microscopic plants and animals -- phytoplankton and zooplankton in the ocean, characterizing, measuring, and quantifying their cells in order to identify them. The automated instrument is low-powered and low-maintenance; it gathers information 24 hours a day, for up to six months at a time, and sends it via fiber-optic cable tether back to a surface ship or land-based lab.

Olson says the instrument was borne of frustration. He and Sosik wanted a clearer picture of the types and numbers of plankton living in the ocean, but weren't satisfied with traditional methods of gathering samples every few hours on research ships at sea.

"There was no good instrument to do what we wanted to do," Olson says. So the two began to develop one, starting with a prototype of the Imaging FlowCytobot in 2003.

What Sosik and Olson didn't realize was that the Imaging FlowCytobot would soon show its versatility and potential for applications. In 2007, while collaborating with Texas A&M biological oceanographer Lisa Campell in the Gulf of Mexico, a prototype version of the Imaging FlowCytobot detected high levels of the toxic algae, Dinophysis cf. ovum, an organism that causes diarrhetic shellfish poisoning in humans. They alerted local health officials, who promptly closed shellfish beds and recalled local oysters, clams, and mussels. As a result, no shellfish-related human illnesses were reported, and a local oyster festival went onwith non-contaminated shellfish brought in from elsewhere.

"The idea that we were designing something that had such an immediate impact on human health was really far from our minds," Sosik says. "It's gratifying to find that something we're doing as a basic research endeavor has this quick return."

Using the Imaging FlowCytobot in the Arctic Ocean, scientists recently discovered a huge bloom of phytoplankton under meter-thick ice, where they previously thought sunlight-requiring phytoplankton could not grow.

Yuki Honjo, McLane's chief operating officer, says, "We're excited about the Imaging FlowCytobot because it can answer a wide variety of questions." She foresees uses ranging from coastal rehabilitation to monitoring complex ecosystems in real-time for applied research.

"We're trying to build a fleet of instruments to answer a fleet of questions," she says.

A collaboration among Farr and other engineers at WHOI, BlueComm uses low-power LED transmitters with small, inexpensive receivers to transfer data through water at a rate of 10 to 20 megabits per second up to 200 meters away. It allows scientists to upload large amounts of data and transmit video in near real-time from seafloor sensors and operate robots without "plugging in" to transmission cables.

Before the arrival of BlueComm, scientists used only acoustic communication devices. These can transfer data over larger distances, but at much slower speeds that could not transfer high-bandwidth data such as video in real-time.

Like cell phone and wireless Internet access, BlueComm transfers data wirelessly, making it possible, for example, to control remotely operated vehicles (ROVs) without a tether cable. Farr and his team demonstrated BlueComm's potential in 2010 when they successfully operated ROV Jason at the Juan de Fuca Ridge in the Pacific Ocean and deployed seafloor equipment using video transmitted through the wireless optical system. He and Ware teamed up with Sonardyne in February 2012 to begin preparing BlueComm for the market.

"BlueComm opens new doors and creates a new way of thinking about how to get data from the sea floor," Farr says. "Rather than recovering the BlueComm instrument to offload data, you can 'fly' an ROV close to a 'sleeping' BlueComm sensor package on the seafloor, wake it up, and tell it to transmit all of its data. Or you can suspend an instrument package from a surface vessel with optical communications on it, wake up the sea floor BlueComm unit, download all of the data, and put it back to sleep. This allows for data recovery using smaller ships and for longer sensor deployments."

Shaun Dunn, engineering business development manager for Sonardyne, says, "It was clear to Sonardyne that there was a perfect synergy between our capabilities at long-range acoustic communications coupled with WHOI's ability to communicate optically at extremely high rates over modest ranges. This unique combination unlocks a whole variety of new and exciting applications for subsea wireless communications that would not have been possible otherwise."

Olson, Sosik, Farr, and Ware are not the only WHOI scientists and engineers who've partnered with outside companies to commercialize their instruments. WHOI engineer Hanumant Singh created SeaBED Technologies in 2010 to manufacture and sell autonomous underwater vehicles (AUVs). The SeaBED AUV can fly slowly or hover over the seafloor at depths of 2,000 meters and collect highly detailed sonar and optical images of the seabed. It has been used to assess fisheries and survey marine protected areas. SeaBED Technologies is located in Falmouth, Mass.

Contact: Media Office
Woods Hole Oceanographic Institution

Related biology news :

1. Linking and lightening: New partnership connects and reveals dark data
2. M2SYS Technology Partners with Hitachi to Offer Innovative Biometric Finger Vein Scanner to US Market
3. Long-term preservation: Pensoft Publishers partner with the CLOCKSS Archive
4. Thomson Reuters Launches Life Sciences Partner Ecosystem to Drive Collaborative R&D Drug Processes
5. Science, Innovation, and Partnerships for Sustainability -- Symposium May 16-18
6. African scientist, designer partner to fashion anti-malaria garment that wards off bugs
7. Ducks Unlimited Canada and Canadian Light Source partnership to shed light on wetlands
8. New museum-university partnership ushers in new era of environmental science education
9. Grants add to Northwestern-Qatar partnership
10. Royal Astronomical Society and Oxford University Press partnership announced
11. F1000 Research partners with figshare to provide smart ways of accessing data
Post Your Comments:
Related Image:
WHOI scientists/engineers partner with companies to market revolutionary new instruments
(Date:6/14/2017)... -- IBM (NYSE: IBM ) is introducing several innovative partner ... developing collaboration between startups and global businesses, taking place in ... event, nine startups will showcase the solutions they have built ... France is one of ... 30 percent increase in the number of startups created between ...
(Date:5/16/2017)... TEANECK, N.J. , May 16, 2017  Veratad ... leading provider of online age and identity verification solutions, ... the K(NO)W Identity Conference 2017, May 15 thru May ... Ronald Regan Building and International Trade Center. ... across the globe and in today,s quickly evolving digital ...
(Date:5/6/2017)... May 5, 2017 RAM Group ... a new breakthrough in biometric authentication based on ... mechanical properties to perform biometric authentication. These new sensors ... material created by Ram Group and its partners. This ... transportation, supply chains and security. Ram Group is ...
Breaking Biology News(10 mins):
(Date:7/26/2017)... ... July 26, 2017 , ... ... supplier of Semantic Graph Database technology for Knowledge Graphs, today announced Gruff ... within data. Gruff provides novice users and graph experts the ability to visually ...
(Date:7/26/2017)... ... July 25, 2017 , ... The ... that its regenerative stem cell therapy has been used on more than 13,000 ... for horses with potentially fatal injuries to tendons and ligaments. , In 2003 ...
(Date:7/26/2017)... (PRWEB) , ... July 26, 2017 , ... ... Us Research Program at the National Institutes of Health (NIH), will be one ... This annual conference provides a platform for a multi-stakeholder discussion on the latest ...
(Date:7/25/2017)... ... July 25, 2017 , ... Bactana Animal Health ... of livestock farming while reducing the use of antibiotics and hormones in the ... Cornell University. , These new proprietary technologies expand the breadth of the ...
Breaking Biology Technology: